JOINT WEAK TYPE INTERPOLATION ON LORENTZ-KARAMATA SPACES

被引:4
作者
Bathory, Michal [1 ]
机构
[1] Charles Univ Prague, Math Inst, Sokolovska 83, Prague 18675 8, Czech Republic
来源
MATHEMATICAL INEQUALITIES & APPLICATIONS | 2018年 / 21卷 / 02期
关键词
Real interpolation; joint weak type operators; Lorentz-Karamata spaces; Hardy inequalities; REAL INTERPOLATION; ZYGMUND SPACES; OPERATORS; EMBEDDINGS;
D O I
10.7153/mia-2018-21-28
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present sharp interpolation theorems, including all limiting cases, for a class of quasilinear operators of joint weak type acting between Lorentz-Karamata spaces over sigma-finite measure. This class contains many of the important integral operators. The optimality in the scale of Lorentz-Karamata spaces is also discussed. The proofs of our results rely on a characterization of Hardy-type inequalities restricted to monotone functions and with power-slowly varying weights. Some of the limiting cases of these inequalities have not been considered in the literature so far.
引用
收藏
页码:385 / 420
页数:36
相关论文
共 20 条
[1]  
[Anonymous], 2002, Trigonometric Series
[2]  
Bennett C., 1988, Interpolation of operators
[3]  
Bennett C., 1980, Dissertationes Math. (Rozprawy Mat.), V175
[4]  
Bingham NH., 1989, REGULAR VARIATION
[5]   WEIGHTED LORENTZ SPACES AND THE HARDY OPERATOR [J].
CARRO, MJ ;
SORIA, J .
JOURNAL OF FUNCTIONAL ANALYSIS, 1993, 112 (02) :480-494
[6]  
EDMUNDS DE, 1995, INDIANA U MATH J, V44, P19
[7]   Optimal Sobolev imbeddings involving rearrangement-invariant quasinorms [J].
Edmunds, DE ;
Kerman, R ;
Pick, L .
JOURNAL OF FUNCTIONAL ANALYSIS, 2000, 170 (02) :307-355
[8]   Interpolation of operators on scales of generalized Lorentz-Zygmund spaces [J].
Evans, WD ;
Opic, B ;
Pick, L .
MATHEMATISCHE NACHRICHTEN, 1996, 182 :127-181
[9]   Real interpolation with logarithmic functors [J].
Evans, WD ;
Opic, B ;
Pick, L .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2002, 7 (02) :187-269
[10]   Limiting reiteration for real interpolation with slowly varying functions [J].
Gogatishvili, A ;
Opic, B ;
Trebels, W .
MATHEMATISCHE NACHRICHTEN, 2005, 278 (1-2) :86-107