Evaluation of Relative Indexes for Multi-objective Clustering

被引:2
作者
Barton, Tomas [1 ,2 ]
Kordik, Pavel [1 ]
机构
[1] Czech Tech Univ, Fac Informat Technol, CR-16635 Prague 6, Czech Republic
[2] ASCR, Inst Mol Genet, Vvi, Prague 14220 4, Czech Republic
来源
HYBRID ARTIFICIAL INTELLIGENT SYSTEMS (HAIS 2015) | 2015年 / 9121卷
关键词
Clustering; Evolution; Multi-objective clustering; Multi-objective evolutionary algorithm; ALGORITHM; ENSEMBLE;
D O I
10.1007/978-3-319-19644-2_39
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
One of the biggest challenges in clustering is finding a robust and versatile criterion to evaluate the quality of clustering results. In this paper, we investigate the extent to which unsupervised criteria can be used to obtain clusters highly correlated to external labels. We show that the usefulness of these criteria is data-dependent and for most data sets multiple criteria are required in order to identify the best performing clustering algorithm. We present a multi-objective evolutionary clustering algorithm capable of finding a set of high-quality solutions. For the real world data sets examined the Pareto front can offer better clusterings than simply optimizing a single unsupervised criterion.
引用
收藏
页码:465 / 476
页数:12
相关论文
共 28 条
[1]   NEW LOOK AT STATISTICAL-MODEL IDENTIFICATION [J].
AKAIKE, H .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1974, AC19 (06) :716-723
[2]   On similarity indices and correction for chance agreement [J].
Albatineh, Ahmed N. ;
Niewiadomska-Bugaj, Magdalena ;
Mihalko, Daniel .
JOURNAL OF CLASSIFICATION, 2006, 23 (02) :301-313
[3]  
Barton T, 2013, ADV INTELL SYST COMP, V189, P467
[4]  
Bifulco I, 2009, IEEE IJCNN, P1463
[5]  
Caruana R, 2006, IEEE DATA MINING, P107
[6]  
Corne DW., 2001, PESA 2 REGION BASED, P283, DOI [DOI 10.5555/2955239.2955289, 10.5555/2955239.2955289]
[7]   CLUSTER SEPARATION MEASURE [J].
DAVIES, DL ;
BOULDIN, DW .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1979, 1 (02) :224-227
[8]   A fast and elitist multiobjective genetic algorithm: NSGA-II [J].
Deb, K ;
Pratap, A ;
Agarwal, S ;
Meyarivan, T .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2002, 6 (02) :182-197
[9]   Multi-objective clustering ensemble for gene expression data analysis [J].
Faceli, Katti ;
de Souto, Marcilio C. R. ;
de Araujo, Daniel S. A. ;
de Carvalho, Andre C. P. L. F. .
NEUROCOMPUTING, 2009, 72 (13-15) :2763-2774
[10]   On clustering validation techniques [J].
Halkidi, M ;
Batistakis, Y ;
Vazirgiannis, M .
JOURNAL OF INTELLIGENT INFORMATION SYSTEMS, 2001, 17 (2-3) :107-145