Methods for interpreting and understanding deep neural networks

被引:1514
作者
Montavon, Gregoire [1 ]
Samek, Wojciech [2 ]
Mueller, Klaus-Robert [1 ,3 ,4 ]
机构
[1] Tech Univ Berlin, Dept Elect Engn & Comp Sci, Marchstr 23, D-10587 Berlin, Germany
[2] Fraunhofer Heinrich Hertz Inst, Dept Video Coding & Analyt, Einsteinufer 37, D-10587 Berlin, Germany
[3] Korea Univ, Dept Brain & Cognit Engn, Anam Dong 5ga, Seoul 136713, South Korea
[4] Max Planck Inst Informat, Stuhlsatzenhausweg, D-66123 Saarbrucken, Germany
基金
新加坡国家研究基金会;
关键词
Deep neural networks; Activation maximization; Sensitivity analysis; Taylor decomposition; Layer-wise relevance propagation; CLASSIFICATION; PREDICTION;
D O I
10.1016/j.dsp.2017.10.011
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper provides an entry point to the problem of interpreting a deep neural network model and explaining its predictions. It is based on a tutorial given at ICASSP 2017. As a tutorial paper, the set of methods covered here is not exhaustive, but sufficiently representative to discuss a number of questions in interpretability, technical challenges, and possible applications. The second part of the tutorial focuses on the recently proposed layer-wise relevance propagation (LRP) technique, for which we provide theory, recommendations, and tricks, to make most efficient use of it on real data. (C) 2017 The Authors. Published by Elsevier Inc.
引用
收藏
页码:1 / 15
页数:15
相关论文
共 77 条
[1]   Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning [J].
Alipanahi, Babak ;
Delong, Andrew ;
Weirauch, Matthew T. ;
Frey, Brendan J. .
NATURE BIOTECHNOLOGY, 2015, 33 (08) :831-+
[2]  
[Anonymous], 2016, P ADV NEURAL INFORM
[3]  
[Anonymous], ARXIV170505598 CORR
[4]  
[Anonymous], ARXIV160203616 CORR
[5]  
[Anonymous], ARXIV161200005 CORR
[6]  
[Anonymous], ARXIV170405796 CORR
[7]  
[Anonymous], ARXIV160603490 CORR
[8]  
[Anonymous], ARXIV170407911 CORR
[9]  
[Anonymous], 2016, ARXIV161002391 CORR
[10]  
[Anonymous], ARXIV170602515 CORR