ROSENTHAL-TYPE INEQUALITIES FOR THE MAXIMUM OF PARTIAL SUMS OF STATIONARY PROCESSES AND EXAMPLES

被引:22
作者
Merlevede, Florence [1 ,2 ]
Peligrad, Magda [3 ]
机构
[1] Univ Paris Est Marne La Vallee, LAMA, F-77454 Marne La Vallee, France
[2] Univ Paris Est Marne La Vallee, UMR CNRS 8050, F-77454 Marne La Vallee, France
[3] Univ Cincinnati, Dept Math Sci, Cincinnati, OH 45221 USA
关键词
Moment inequality; maximal inequality; Rosenthal inequality; stationary sequences; martingale; projective conditions; CENTRAL-LIMIT-THEOREM; INVARIANCE-PRINCIPLE; STRONG LAW; SEQUENCES; MOMENT; CONVERGENCE; RATES;
D O I
10.1214/11-AOP694
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The aim of this paper is to propose new Rosenthal-type inequalities for moments of order higher than 2 of the maximum of partial sums of stationary sequences including martingales and their generalizations. As in the recent results by Peligrad et al. [Proc. Amer. Math. Soc. 135 (2007) 541-550] and Rio [J. Theoret. Probab. 22 (2009) 146-163], the estimates of the moments are expressed in terms of the norms of projections of partial sums. The proofs of the results are essentially based on a new maximal inequality generalizing the Doob maximal inequality for martingales and dyadic induction. Various applications are also provided.
引用
收藏
页码:914 / 960
页数:47
相关论文
共 45 条
[1]  
[Anonymous], 2009, I MATH STAT IMS COLL, DOI DOI 10.1214/09-IMSCOLL518
[2]  
[Anonymous], 1991, PROBAB MATH STAT
[3]  
[Anonymous], 1969, Soviet Math. Dokl.
[4]  
[Anonymous], MATH APPL
[5]  
Billingsley Patrick, 1999, Convergence of probability measures, V2nd
[6]  
Bradley R.C., 2007, Introduction to Strong Mixing Conditions
[7]   ESTIMATION OF DENSITIES - MINIMAL RISK [J].
BRETAGNOLLE, J ;
HUBER, C .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1979, 47 (02) :119-137
[8]   DISTRIBUTION FUNCTION INEQUALITIES FOR MARTINGALES [J].
BURKHOLDER, DL .
ANNALS OF PROBABILITY, 1973, 1 (01) :19-42
[9]  
De la Pena V. H, 1999, DECOUPLING DEPENDENC, DOI 10.1007/978-1-4612-0537-1
[10]   New dependence coefficients. Examples and applications to statistics [J].
Dedecker, J ;
Prieur, C .
PROBABILITY THEORY AND RELATED FIELDS, 2005, 132 (02) :203-236