Detecting LWIR Filters using Hyperspectral Camera and Neural Networks

被引:0
作者
Cech, Jiri [1 ]
Rozkovec, Martin [1 ]
机构
[1] Tech Univ Liberec, FMMIS, Inst Informat Technol & Elect, Liberec, Czech Republic
来源
2017 INTERNATIONAL CONFERENCE ON APPLIED ELECTRONICS (AE) | 2017年
关键词
Hyperspectral imaging; LWIR; Neural networks; PCA;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We present detection of various filters using neural networks usable for our Long wave infrared (LWIR) hyperspectral detection system (HDES). Some reduction techniques are shown, for our aim of the small neural network with small computing requirements. In addition, the filter measurement is usable for calibration and verification of the HDES properties.
引用
收藏
页码:35 / 38
页数:4
相关论文
共 13 条
[1]   Principal component analysis [J].
Abdi, Herve ;
Williams, Lynne J. .
WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2010, 2 (04) :433-459
[2]  
[Anonymous], ZYNQ 7000 ALL PROGR
[3]   An information-theoretic approach to spectral variability, similarity, and discrimination for hyperspectral image analysis [J].
Chang, CI .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2000, 46 (05) :1927-1932
[4]  
Collobert R., 2017, TORCH
[5]  
Geitgey A., 2017, MACHINE LEARNING I 3
[6]   Nonuniformity correction of infrared focal plane arrays [J].
Isoz, W ;
Svensson, T ;
Renhorn, I .
INFRARED TECHNOLOGY AND APPLICATIONS XXXI, PTS 1 AND 2, 2005, 5783 :949-960
[7]   Automatic reduction of hyperspectral imagery using wavelet spectral analysis [J].
Kaewpijit, S ;
Le moigne, J ;
El-Ghazawi, T .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2003, 41 (04) :863-871
[8]  
Kavukcuoglu K., 2017, SOME UNSUPERVISED LE
[9]  
Li XJ, 2009, PROCEEDINGS OF 2009 INTERNATIONAL CONFERENCE ON IMAGE ANALYSIS AND SIGNAL PROCESSING, P114
[10]  
Girón ADR, 2010, ING INVEST, V30, P197