Jordan-Wigner transformations for tree structures

被引:11
作者
Backens, Stefan [1 ]
Shnirman, Alexander [1 ,2 ]
Makhlin, Yuriy [3 ,4 ]
机构
[1] Karlsruhe Inst Technol, Inst Theorie Kondensierten Materie, D-76131 Karlsruhe, Germany
[2] Karlsruhe Inst Technol, Inst Nanotechnol, D-76344 Eggenstein Leopoldshafen, Germany
[3] Natl Res Univ Higher Sch Econ, Condensed Matter Phys Lab, Moscow 101000, Russia
[4] Landau Inst Theoret Phys, Acad Semyonov Av 1a, Chernogolovka 142432, Russia
基金
俄罗斯科学基金会;
关键词
NON-ABELIAN STATISTICS; 2; DIMENSIONS; QUANTUM; HAMILTONIANS; FERMIONS; STATES; SPINS;
D O I
10.1038/s41598-018-38128-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The celebrated Jordan-Wigner transformation provides an efficient mapping between spin chains and fermionic systems in one dimension. Here we extend this spin-fermion mapping to arbitrary tree structures, which enables mapping between fermionic and spin systems with nearest-neighbor coupling. The mapping is achieved with the help of additional spins at the junctions between one-dimensional chains. This property allows for straightforward simulation of Majorana braiding in spin or qu bit systems.
引用
收藏
页数:8
相关论文
共 26 条
[1]   Majorana quasiparticles in condensed matter [J].
Aguado, Ramon .
RIVISTA DEL NUOVO CIMENTO, 2017, 40 (11) :523-593
[2]   Non-Abelian statistics and topological quantum information processing in 1D wire networks [J].
Alicea, Jason ;
Oreg, Yuval ;
Refael, Gil ;
von Oppen, Felix ;
Fisher, Matthew P. A. .
NATURE PHYSICS, 2011, 7 (05) :412-417
[3]   Nonstandard symmetry classes in mesoscopic normal-superconducting hybrid structures [J].
Altland, A ;
Zirnbauer, MR .
PHYSICAL REVIEW B, 1997, 55 (02) :1142-1161
[4]   Emulating Majorana fermions and their braiding by Ising spin chains [J].
Backens, Stefan ;
Shnirman, Alexander ;
Makhlin, Yuriy ;
Gefen, Yuval ;
Mooij, Johan E. ;
Schoen, Gerd .
PHYSICAL REVIEW B, 2017, 96 (19)
[5]   Algebraic approach to interacting quantum systems [J].
Batista, CD ;
Ortiz, G .
ADVANCES IN PHYSICS, 2004, 53 (01) :1-82
[6]   Fermionic quantum computation [J].
Bravyi, SB ;
Kitaev, AY .
ANNALS OF PHYSICS, 2002, 298 (01) :210-226
[7]   Quantum spins on star graphs and the Kondo model [J].
Crampe, N. ;
Trombettoni, A. .
NUCLEAR PHYSICS B, 2013, 871 (03) :526-538
[8]   Topological phases of fermions in one dimension [J].
Fidkowski, Lukasz ;
Kitaev, Alexei .
PHYSICAL REVIEW B, 2011, 83 (07)
[10]   Quantum Simulation of a Lattice Schwinger Model in a Chain of Trapped Ions [J].
Hauke, P. ;
Marcos, D. ;
Dalmonte, M. ;
Zoller, P. .
PHYSICAL REVIEW X, 2013, 3 (04)