Alternative commutation relations, star products and tomography

被引:180
作者
Man'ko, OV
Man'ko, VI
Marmo, G
机构
[1] PN Lebedev Phys Inst, Moscow 119991, Russia
[2] Univ Naples Federico II, Dipartimento Sci Fis, I-80126 Naples, Italy
[3] Ist Nazl Fis Nucl, Sez Napoli, I-80126 Naples, Italy
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2002年 / 35卷 / 03期
关键词
D O I
10.1088/0305-4470/35/3/315
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Invertible maps from operators of quantum observables onto functions of c-number arguments and their associative products are first assessed. Different types of maps such as the Weyl-Wigner-Stratonovich map and s-ordered quasi-distribution are discussed. The recently introduced symplectic tomography map of observables (tomograms) related to the Heisenberg-Weyl group is shown to belong to the standard framework of the maps from quantum observables onto the c-number functions. The star product for symbols of the quantum observable for each one of the maps (including the tomographic map) and explicit relations among different star products are obtained. Deformations of the Moyal star product and alternative commutation relations are also considered.
引用
收藏
页码:699 / 719
页数:21
相关论文
共 47 条
[1]   State reconstruction for a collection of two-level systems [J].
Agarwal, GS .
PHYSICAL REVIEW A, 1998, 57 (01) :671-673
[2]  
ANIELLO P, 2000, J OPT B-QUANTUM S O, V2, P1
[3]   GENERAL-SOLUTION TO THE ASSOCIATIVITY EQUATION IN THE EUCLIDEAN PHASE-SPACE [J].
BATALIN, IA ;
TYUTIN, IV .
JOURNAL OF MATHEMATICAL PHYSICS, 1993, 34 (02) :369-380
[4]   QUANTUM-MECHANICS AS A DEFORMATION OF CLASSICAL MECHANICS [J].
BAYEN, F ;
FLATO, M ;
FRONSDAL, C ;
LICHNEROWICZ, A ;
STERNHEIMER, D .
LETTERS IN MATHEMATICAL PHYSICS, 1977, 1 (06) :521-530
[5]   THE QUANTUM GROUP SUQ(2) AND A Q-ANALOGUE OF THE BOSON OPERATORS [J].
BIEDENHARN, LC .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (18) :L873-L878
[6]   Phase-space formulation of quantum mechanics and quantum-state reconstruction for physical systems with Lie-group symmetries [J].
Brif, C ;
Mann, A .
PHYSICAL REVIEW A, 1999, 59 (02) :971-987
[7]   DENSITY OPERATORS AND QUASIPROBABILITY DISTRIBUTIONS [J].
CAHILL, KE ;
GLAUBER, RJ .
PHYSICAL REVIEW, 1969, 177 (5P1) :1882-+
[8]   THE FEYNMAN PROBLEM AND THE INVERSE PROBLEM FOR POISSON DYNAMICS [J].
CARINENA, JF ;
IBORT, LA ;
MARMO, G ;
STERN, A .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1995, 263 (03) :153-212
[9]   Contractions:: Nijenhuis and Saletan tensors for general algebraic structures [J].
Cariñena, JF ;
Grabowski, J ;
Marmo, G .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (18) :3769-3789
[10]   Quantum bi-Hamiltonian systems [J].
Cariñena, JF ;
Grabowski, J ;
Marmo, G .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2000, 15 (30) :4797-4810