A Simple Noise-Tolerant Abstraction Algorithm for Fast k-NN Classification

被引:0
作者
Ougiaroglou, Stefanos [1 ]
Evangelidis, Georgios [1 ]
机构
[1] Univ Macedonia, Dept Appl Informat, Thessaloniki 54006, Greece
来源
HYBRID ARTIFICIAL INTELLIGENT SYSTEMS, PT II | 2012年 / 7209卷
关键词
k-NN classification; noisy data; clustering; data reduction; SOFTWARE TOOL; NEAREST; REDUCTION; KEEL;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The k-Nearest Neighbor (k-NN) classifier is a widely-used and effective classification method. The main k-NN drawback is that it involves high computational cost when applied on large datasets. Many Data Reduction Techniques have been proposed in order to speed-up the classification process. However, their effectiveness depends on the level of noise in the data. This paper shows that the k-means clustering algorithm can be used as a noise-tolerant Data Reduction Technique. The conducted experimental study illustrates that if the reduced dataset includes the k-means centroids as representatives of the initial data, performance is not negatively affected as much by the addition of noise.
引用
收藏
页码:210 / 221
页数:12
相关论文
共 30 条
[1]   KEEL: a software tool to assess evolutionary algorithms for data mining problems [J].
Alcala-Fdez, J. ;
Sanchez, L. ;
Garcia, S. ;
del Jesus, M. J. ;
Ventura, S. ;
Garrell, J. M. ;
Otero, J. ;
Romero, C. ;
Bacardit, J. ;
Rivas, V. M. ;
Fernandez, J. C. ;
Herrera, F. .
SOFT COMPUTING, 2009, 13 (03) :307-318
[2]  
Alcalá-Fdez J, 2011, J MULT-VALUED LOG S, V17, P255
[3]  
Alizadeh H., 2009, J CONVERGENCE INFORM, V4, P84
[4]  
Angiulli F., 2005, INT C MACH LEARN ICM, P25, DOI 10.1145/1102351.1102355
[5]  
[Anonymous], 1991, Nearest neighbor (NN) norms: NN pattern classification techniques
[6]   A new fast prototype selection method based on clustering [J].
Arturo Olvera-Lopez, J. ;
Ariel Carrasco-Ochoa, J. ;
Francisco Martinez-Trinidad, J. .
PATTERN ANALYSIS AND APPLICATIONS, 2010, 13 (02) :131-141
[7]   A sample set condensation algorithm for the class sensitive artificial neural network [J].
Chen, CH ;
Jozwik, A .
PATTERN RECOGNITION LETTERS, 1996, 17 (08) :819-823
[8]  
Datta P., 1997, P 14 ICML, P158
[9]  
Devi V Susheela, 2002, PATTERN RECOGNITION, V35
[10]   Using representative-based clustering for nearest neighbor dataset editing [J].
Eick, CF ;
Zeidat, EN ;
Vilalta, R .
FOURTH IEEE INTERNATIONAL CONFERENCE ON DATA MINING, PROCEEDINGS, 2004, :375-378