Quantum geometry of refined topological strings

被引:147
作者
Aganagic, Mina [1 ,2 ]
Cheng, Miranda C. N. [3 ,4 ,5 ]
Dijkgraaf, Robbert [6 ]
Krefl, Daniel [1 ]
Vafa, Cumrun [4 ]
机构
[1] Univ Calif Berkeley, Ctr Theoret Phys, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
[3] Harvard Univ, Dept Math, Cambridge, MA 02138 USA
[4] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
[5] Inst Adv Study, Sch Nat Sci, Princeton, NJ 08540 USA
[6] Univ Amsterdam, Inst Theoret Phys, NL-1018 XE Amsterdam, Netherlands
基金
美国国家科学基金会;
关键词
Topological Strings; Matrix Models;
D O I
10.1007/JHEP11(2012)019
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We consider branes in refined topological strings. We argue that their wavefunctions satisfy a Schrodinger equation depending on multiple times and prow this in the case where the topological string has a dual matrix model description. Furthermore, in the limit where one of the equivariant rotations approaches zero, the brane partition function satisfies a time-independent Schrodinger equation. We use this observation, as well as the back reaction of the brane on the closed string geometry, to offer an explanation of the connection between integrable systems and N = 2 gauge systems in four dimensions observed by Nekrasov and Shatashvili.
引用
收藏
页数:53
相关论文
共 74 条
[1]   Topological strings and integrable hierarchies [J].
Aganagic, M ;
Dijkgraaf, R ;
Klemm, A ;
Mariño, M ;
Vafa, C .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2006, 261 (02) :451-516
[2]   The topological vertex [J].
Aganagic, M ;
Klemm, A ;
Mariño, M ;
Vafa, C .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2005, 254 (02) :425-478
[3]  
Aganagic M., ARXIVHEPTH0105045
[4]  
Aganagic M., HEPTH0012041INSPIRE
[5]   Wall Crossing and M-Theory [J].
Aganagic, Mina ;
Ooguri, Hirosi ;
Vafa, Cumrun ;
Yamazaki, Masahito .
PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 2011, 47 (02) :569-584
[6]   Affine SL(2) Conformal Blocks from 4d Gauge Theories [J].
Alday, Luis F. ;
Tachikawa, Yuji .
LETTERS IN MATHEMATICAL PHYSICS, 2010, 94 (01) :87-114
[7]  
Alday LF, 2010, J HIGH ENERGY PHYS, DOI 10.1007/JHEP01(2010)113
[8]   Riemann surfaces, separation of variables and classical and quantum integrability [J].
Babelon, O ;
Talon, M .
PHYSICS LETTERS A, 2003, 312 (1-2) :71-77
[9]   INFINITE CONFORMAL SYMMETRY IN TWO-DIMENSIONAL QUANTUM-FIELD THEORY [J].
BELAVIN, AA ;
POLYAKOV, AM ;
ZAMOLODCHIKOV, AB .
NUCLEAR PHYSICS B, 1984, 241 (02) :333-380
[10]   KODAIRA-SPENCER THEORY OF GRAVITY AND EXACT RESULTS FOR QUANTUM STRING AMPLITUDES [J].
BERSHADSKY, M ;
CECOTTI, S ;
OOGURI, H ;
VAFA, C .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1994, 165 (02) :311-427