Modified Choice Function Heuristic Selection for the Multidimensional Knapsack Problem

被引:10
|
作者
Drake, John H. [1 ]
Oezcan, Ender [1 ]
Burke, Edmund K. [2 ]
机构
[1] Univ Nottingham, Sch Comp Sci, ASAP Res Grp, Nottingham NG8 1BB, England
[2] Univ Stirling, Sch Nat Sci, Comp Sci & Math, Stirling FK9 4LA, Scotland
来源
GENETIC AND EVOLUTIONARY COMPUTING | 2015年 / 329卷
基金
英国工程与自然科学研究理事会;
关键词
Hyper-heuristics; Choice Function; Heuristic Selection; Multidimensional Knapsack Problem; Combinatorial Optimization; HYPER-HEURISTICS; ALGORITHM;
D O I
10.1007/978-3-319-12286-1_23
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Hyper-heuristics are a class of high-level search methods used to solve computationally difficult problems, which operate on a search space of low-level heuristics rather than solutions directly. Previous work has shown that selection hyper-heuristics are able to solve many combinatorial optimisation problems, including the multidimensional 0-1 knapsack problem (MKP). The traditional framework for iterative selection hyper-heuristics relies on two key components, a heuristic selection method and a move acceptance criterion. Existing work has shown that a hyper-heuristic using Modified Choice Function heuristic selection can be effective at solving problems in multiple problem domains. Late Acceptance Strategy is a hill climbing metaheuristic strategy often used as a move acceptance criteria in selection hyper-heuristics. This work compares a Modified Choice Function - Late Acceptance Strategy hyper-heuristic to an existing selection hyper-heuristic method from the literature which has previously performed well on standard MKP benchmarks.
引用
收藏
页码:225 / 234
页数:10
相关论文
共 50 条
  • [1] A hybrid heuristic for the multiple choice multidimensional knapsack problem
    Mansi, Raid
    Alves, Claudio
    Valerio de Carvalho, J. M.
    Hanafi, Said
    ENGINEERING OPTIMIZATION, 2013, 45 (08) : 983 - 1004
  • [2] Heuristic algorithms for the multiple-choice multidimensional knapsack problem
    Hifi, M
    Michrafy, M
    Sbihi, A
    JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY, 2004, 55 (12) : 1323 - 1332
  • [3] A Stochastic Local Search Heuristic for the Multidimensional Multiple-choice Knapsack Problem
    Xia, Youxin
    Gao, Chao
    Li, JinLong
    BIO-INSPIRED COMPUTING - THEORIES AND APPLICATIONS, BIC-TA 2015, 2015, 562 : 513 - 522
  • [4] A randomized heuristic repair for the multidimensional knapsack problem
    Martins, Jean P.
    Ribas, Bruno C.
    OPTIMIZATION LETTERS, 2021, 15 (02) : 337 - 355
  • [5] A randomized heuristic repair for the multidimensional knapsack problem
    Jean P. Martins
    Bruno C. Ribas
    Optimization Letters, 2021, 15 : 337 - 355
  • [6] Hybrid Heuristic Algorithm for the Multidimensional Knapsack Problem
    Atilgan, Can
    Nuriyev, Urfat
    2012 IV INTERNATIONAL CONFERENCE PROBLEMS OF CYBERNETICS AND INFORMATICS (PCI), 2012,
  • [7] A Memetic Algorithm with a Novel Repair Heuristic for the Multiple-Choice Multidimensional Knapsack Problem
    Yang, Jaeyoung
    Kim, Yong-Hyuk
    Yoon, Yourim
    MATHEMATICS, 2022, 10 (04)
  • [8] A new heuristic for solving the multichoice multidimensional knapsack problem
    Parra-Hernández, R
    Dimopoulos, NJ
    IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART A-SYSTEMS AND HUMANS, 2005, 35 (05): : 708 - 717
  • [9] A Fast and Scalable Multidimensional Multiple-Choice Knapsack Heuristic
    Shojaei, Hamid
    Basten, Twan
    Geilen, Marc
    Davoodi, Azadeh
    ACM TRANSACTIONS ON DESIGN AUTOMATION OF ELECTRONIC SYSTEMS, 2013, 18 (04)
  • [10] Problem reduction heuristic for the 0-1 multidimensional knapsack problem
    Hill, Raymond R.
    Cho, Yong Kun
    Moore, James T.
    COMPUTERS & OPERATIONS RESEARCH, 2012, 39 (01) : 19 - 26