A Support Vector Machine MUSIC Algorithm

被引:33
作者
El Gonnouni, Amina [1 ]
Martinez-Ramon, Manel [2 ]
Luis Rojo-Alvarez, Jose [3 ]
Camps-Valls, Gustavo [4 ]
Ramon Figueiras-Vidal, Anibal [2 ]
Christodoulou, Christos G. [5 ]
机构
[1] Univ Abdelmalek Essaadi, Fac Sci Tetouan, Tetouan 93030, Morocco
[2] Univ Carlos III Madrid, Dept Signal Theory & Commun, Madrid 28911, Spain
[3] Univ Rey Juan Carlos, Dept Signal Theory & Commun, Madrid 28947, Spain
[4] Univ Valencia, IPL, Dept Elect Engn, Valencia, Spain
[5] Univ New Mexico, Dept Elect & Comp Engn, Albuquerque, NM 87131 USA
关键词
Direction of arrival (DOA); Minimum Variance Distortionless Response (MVDR); MUltiple SIgnal Characterization (MUSIC); Support Vector Machine (SVM); OF-ARRIVAL ESTIMATION; SPATIAL SMOOTHING TECHNIQUES; DOA ESTIMATION; REGRESSION; PARAMETERS; DESIGN; SYSTEM; NOISE;
D O I
10.1109/TAP.2012.2209195
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper introduces a new Support Vector Machine (SVM) formulation for the direction of arrival (DOA) estimation problem. We establish a theoretical relationship between the Minimum Variance Distortionless Response (MVDR) and the MUltiple SIgnal Characterization (MUSIC) methods. This leads naturally to the derivation of an SVM-MUSIC algorithm, which combines the benefits of subspace methods with those of SVM. Spatially smoothed versions and a recursive form of the algorithms exhibit good performance against coherent signals. We test the method's performance in scenarios with noncoherent and coherent signals, and in small-sample size-situations obtaining an improved performance in comparison with existing standard approaches.
引用
收藏
页码:4901 / 4910
页数:10
相关论文
共 55 条
[1]  
AIZERMAN MA, 1965, AUTOMAT REM CONTR+, V25, P821
[2]   Microwave devices and antennas modelling by support vector regression machines [J].
Angiulli, G. ;
Cacciola, M. ;
Versaci, M. .
IEEE TRANSACTIONS ON MAGNETICS, 2007, 43 (04) :1589-1592
[3]  
[Anonymous], 2009, Kernel methods for remote sensing data analysis
[4]  
[Anonymous], 2001, DETECTION ESTIMATION
[5]   Multiple support vector regression for antenna array characterization and synthesis [J].
Ayestaran, Rafael Gonzalez ;
Campillo, Maria Fernanda ;
Las-Heras, Fernando .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2007, 55 (09) :2495-2501
[6]   Support vector regression for the design of array antennas [J].
Ayestarán, RG ;
Las-Heras, F .
IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2005, 4 :414-416
[7]   Clifford Support Vector Machines for Classification, Regression, and Recurrence [J].
Bayro-Corrochano, Eduardo Jose ;
Arana-Daniel, Nancy .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2010, 21 (11) :1731-1746
[8]   OPTIMALITY OF HIGH-RESOLUTION ARRAY-PROCESSING USING THE EIGENSYSTEM APPROACH [J].
BIENVENU, G ;
KOPP, L .
IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1983, 31 (05) :1235-1248
[9]  
CampsValls G, 2007, KERNEL METHODS IN BIOENGINEERING, SIGNAL AND IMAGE PROCESSING, P1
[10]  
Caorsi S, 2003, APPL COMPUT ELECTROM, V18, P65