Generalized Toponogov comparison theorem for manifolds of roughly non-negative radial curvature

被引:0
作者
Machigashira, Yoshiroh [1 ]
机构
[1] Osaka Kyoiku Univ, Div Math Sci, Kashiwara, Osaka 5828582, Japan
来源
INFORMATION-AN INTERNATIONAL INTERDISCIPLINARY JOURNAL | 2010年 / 13卷 / 3B期
关键词
Riemannian geometry; radial curvature; Toponogov Comparison Theorem;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Let M be a complete open Riemannian manifold. A pair (M, o) of M and a point o is an element of E M is said to be dominated by a non-negative continuous function h : [0, infinity) -> [0, infinity) if it satisfies the following. That is, the minimal radial curvature at p is an element of M from o is not less than -h (d (o, p)), where d is the distance function of M. In the case where integral(infinity)(0) r . h(r)dr < infinity, we say that (M, o) or M is of roughly non-negative radial curvature. hi this article, we study a generalized Toponogov's theorem and topology of manifolds of roughly non-negative radial curvature.
引用
收藏
页码:835 / 841
页数:7
相关论文
共 9 条
[1]  
ABRESCH U, 1985, ANN SCI ECOLE NORM S, V18, P651
[2]  
GREENE R, 1979, LECT NOTES MATH, V699
[3]   CURVATURE, DIAMETER AND BETTI NUMBERS [J].
GROMOV, M .
COMMENTARII MATHEMATICI HELVETICI, 1981, 56 (02) :179-195
[4]   GENERALIZED SPHERE THEOREM [J].
GROVE, K ;
SHIOHAMA, K .
ANNALS OF MATHEMATICS, 1977, 106 (02) :201-211
[5]   MANIFOLDS WITH RESTRICTED CONJUGATE LOCUS [J].
KLINGENBERG, W .
ANNALS OF MATHEMATICS, 1963, 78 (03) :527-+
[6]   COMPLETE OPEN MANIFOLDS OF NONNEGATIVE RADIAL CURVATURE [J].
MACHIGASHIRA, Y .
PACIFIC JOURNAL OF MATHEMATICS, 1994, 165 (01) :153-160
[7]   MANIFOLDS WITH PINCHED RADIAL CURVATURE [J].
MACHIGASHIRA, Y .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 118 (03) :979-985
[8]  
Otsu Y., 1989, GEOMETRY MANIFOLDS P, V8, P295