Cellular operads and iterated loop spaces

被引:14
作者
Berger, C
机构
关键词
D O I
10.5802/aif.1543
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The configuration space of p-tuples of pairwise distinct points in R(infinity) carries a natural filtration coming from the inclusions of the R(n) into R(infinity). We characterize the homotopy type of this filtration by the combinatorial properties of an underlying cellular structure and establish a close relationship to May's theory of E(n)-operads. This gives a unified approach to the different known combinatorial models of iterated loop spaces reproving by the way the approximation theorems of Mile;ram, Smith and Kashiwabara.
引用
收藏
页码:1125 / &
页数:34
相关论文
共 20 条
[1]  
[Anonymous], 1976, HOMOLOGY OFITERATED
[2]  
BALTEANU C, 1995, ITERATED MONOIDAL CA
[3]  
Barratt M. G., 1974, TOPOLOGY, V13, P199
[4]  
BARRATT MG, 1974, TOPOLOGY, V13, P25
[5]  
BARRATT MG, 1974, TOPOLOGY, V13, P113
[6]  
BAUES HJ, 1980, MEM AM MATH SOC, V230
[7]  
Berger C, 1995, B SOC MATH FR, V123, P1
[8]  
Blind R., 1987, Aequationes Math, V34, P287, DOI [10.1007/BF01830678, DOI 10.1007/BF01830678]
[9]  
Boardman M., 1973, LECT NOTES MATH, V347
[10]   SPLITTING OF CERTAIN SPACES CX [J].
COHEN, FR ;
MAY, JP ;
TAYLOR, LR .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1978, 84 (NOV) :465-496