The Kapustin-Li formula revisited

被引:15
作者
Dyckerhoff, Tobias [1 ]
Murfet, Daniel [2 ]
机构
[1] Yale Univ, Dept Math, New Haven, CT 06520 USA
[2] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90024 USA
关键词
Dg categories; Matrix factorizations; Topological quantum field theory; MATRIX FACTORIZATIONS; CATEGORIES;
D O I
10.1016/j.aim.2012.07.021
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We provide a new perspective on the Kapustin-Li formula Tor the duality pairing on the morphism complexes in the matrix factorization category of an isolated hypersurface singularity. In our context, the formula arises as an explicit description of a local duality isomorphism, obtained by using the basic perturbation lemma and Grothendieck residues. The non-degeneracy of the pairing becomes apparent in this setting. Further, we show that the pairing lifts to a Calabi-Yau structure on the, matrix factorization category. This allows its to define topological quantum field theories with matrix factorizations as boundary conditions. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:1858 / 1885
页数:28
相关论文
共 27 条
[1]  
[Anonymous], 1994, WILEY CLASSICS LIB
[2]  
[Anonymous], 1993, CAMBRIDGE STUDIES AD
[3]  
AUSLANDER M., 1978, Lecture Notes in Pure Appl. Math., V37, P1
[4]  
Buchweitz R.-O., 2021, Math. Surveys and Monographs, V262
[5]  
Carqueville N., 2009, ARXIV12041951, V0907, P005
[6]  
Cho C.-H., 2010, ARXIV10023653V2
[7]   Topological conformal field theories and Calabi-Yau categories [J].
Costello, Kevin .
ADVANCES IN MATHEMATICS, 2007, 210 (01) :165-214
[8]  
CRAINIC M, 2004, ARXIVMATHAT0403266
[9]   Equivalence and finite determinancy of mappings [J].
Cutkosky, SD ;
Srinivasan, H .
JOURNAL OF ALGEBRA, 1997, 188 (01) :16-57
[10]  
Dyckerhoff T., 2011, ARXIV11022957