A posteriori error estimates of hp-discontinuous Galerkin method for strongly nonlinear elliptic problems

被引:6
作者
Bi, Chunjia [1 ]
Wang, Cheng [2 ]
Lin, Yanping [3 ]
机构
[1] Yantai Univ, Dept Math, Yantai, Shandong, Peoples R China
[2] Tongji Univ, Dept Math, Shanghai 200092, Peoples R China
[3] Hong Kong Polytech Univ, Dept Appl Math, Hong Kong, Hong Kong, Peoples R China
基金
美国国家科学基金会;
关键词
hp-discontinuous Galerkin method; Strongly nonlinear elliptic problems; A posteriori error estimates; Residual estimator; FINITE-ELEMENT METHODS; BOUNDARY-VALUE-PROBLEMS; PARTIAL-DIFFERENTIAL-EQUATIONS; CONVECTION-DIFFUSION PROBLEMS; NONMONOTONE TYPE; APPROXIMATION; PRIORI; DISCRETIZATIONS; CONVERGENCE; VERSION;
D O I
10.1016/j.cma.2015.08.017
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, we study the residual-based a posteriori error estimates of hp-discontinuous Galerkin finite element methods for strongly nonlinear elliptic boundary value problems. Computable upper and lower bounds on the error are derived in a natural mesh-dependent energy norm. The bounds are explicit in the local mesh size and the local degree of the approximating polynomial. Numerical experiments are also provided to illustrate the performance of the proposed estimators. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:140 / 166
页数:27
相关论文
共 59 条
[1]  
[Anonymous], 1999, HIGH ORDER METHODS C
[2]   Unified analysis of discontinuous Galerkin methods for elliptic problems [J].
Arnold, DN ;
Brezzi, F ;
Cockburn, B ;
Marini, LD .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2002, 39 (05) :1749-1779
[3]   AN INTERIOR PENALTY FINITE-ELEMENT METHOD WITH DISCONTINUOUS ELEMENTS [J].
ARNOLD, DN .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1982, 19 (04) :742-760
[4]   Energy norm a posteriori error estimation for discontinuous Galerkin methods [J].
Becker, R ;
Hansbo, P ;
Larson, MG .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2003, 192 (5-6) :723-733
[5]  
Bernardi C., 2003, R03038 LAB JL LIONS
[6]   A Posteriori Error Estimates of Discontinuous Galerkin Method for Nonmonotone Quasi-linear Elliptic Problems [J].
Bi, Chunjia ;
Ginting, Victor .
JOURNAL OF SCIENTIFIC COMPUTING, 2013, 55 (03) :659-687
[7]   Two-Grid Discontinuous Galerkin Method for Quasi-Linear Elliptic Problems [J].
Bi, Chunjia ;
Ginting, Victor .
JOURNAL OF SCIENTIFIC COMPUTING, 2011, 49 (03) :311-331
[8]  
Brenner S. C., 2007, MATH THEORY FINITE E
[9]   Poincare-Friedrichs inequalities for piecewise H1 functions [J].
Brenner, SC .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2003, 41 (01) :306-324
[10]   A mixed local discontinuous Galerkin method for a class of nonlinear problems in fluid mechanics [J].
Bustinza, R ;
Gatica, GN .
JOURNAL OF COMPUTATIONAL PHYSICS, 2005, 207 (02) :427-456