Impact of Improved Mellor-Yamada Turbulence Model on Tropical Cyclone-Induced Vertical Mixing in the Oceanic Boundary Layer

被引:4
作者
Kim, Taekyun [1 ]
Moon, Jae-Hong [1 ]
机构
[1] Jeju Natl Univ, Coll Ocean Sci, Dept Earth & Marine Sci, Jeju 63243, South Korea
基金
新加坡国家研究基金会;
关键词
turbulent mixing; improved Mellor-Yamada turbulence model; ocean boundary layer; typhoon; MIXED-LAYER; CLOSURE-MODEL; DEEP-OCEAN; SURFACE; ENERGY; SIMULATION; HURRICANES; STORM; SEA; PREDICTION;
D O I
10.3390/jmse8070497
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
It has been identified that there are several limitations in the Mellor-Yamada (MY) turbulence model applied to the atmospheric mixed layer, and Nakanishi and Niino proposed an improved MY model using a database for large-eddy simulations. The improved MY model (Mellor-Yamada-Nakanishi-Niino model; MYNN model) is popular in atmospheric applications; however, it is rarely used in oceanic applications. In this study, the MY model and the MYNN model are compared to identify the efficiency of the MYNN model incorporated into an ocean general circulation model. To investigate the impact of the improved MY model on the vertical mixing in the oceanic boundary layer, the response of the East/Japan Sea to Typhoon Maemi in 2003 was simulated. After the typhoon event, the sea surface temperature obtained from the MYNN model showed better agreement with the satellite measurements than those obtained from the MY model. The MY model produced an extremely shallow mixed layer, and consequently, the surface temperatures were excessively warm. Furthermore, the near-inertial component of the velocity simulated using the MY model was larger than that simulated using the MYNN model at the surface layer. However, in the MYNN model, the near-inertial waves became larger than those simulated by the MY model at all depths except the surface layer. Comparatively, the MYNN model showed enhanced vertical propagation of the near-inertial activity from the mixed layer into the deep ocean, which results in a temperature decrease at the sea surface and a deepening of the mixed layer.
引用
收藏
页数:15
相关论文
共 73 条
[1]  
[Anonymous], 1996, THESIS
[2]   MODELING VERTICAL STRUCTURE OF OPEN-CHANNEL FLOWS [J].
BLUMBERG, AF ;
GALPERIN, B ;
OCONNOR, DJ .
JOURNAL OF HYDRAULIC ENGINEERING-ASCE, 1992, 118 (08) :1119-1134
[3]  
Chikira M., 2007, P AUT M MET SOC JAP, P71
[4]  
Choi Byungho, 2002, [Journal of Korean Society of Coastal and Ocean Engineers, 한국해안·해양공학회논문집], V14, P41
[5]   Tropical storm-induced near-inertial internal waves during the Cirene experiment: Energy fluxes and impact on vertical mixing [J].
Cuypers, Y. ;
Le Vaillant, X. ;
Bouruet-Aubertot, P. ;
Vialard, J. ;
McPhaden, M. J. .
JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2013, 118 (01) :358-380
[6]  
Danioux E, 2008, J PHYS OCEANOGR, V38, P2224, DOI [10.1175/2008JPO3821.1, 10.1175/2008JP03821.1]
[7]  
DASARO EA, 1985, J PHYS OCEANOGR, V15, P1043, DOI 10.1175/1520-0485(1985)015<1043:TEFFTW>2.0.CO
[8]  
2
[9]  
DASARO EA, 1995, J PHYS OCEANOGR, V25, P2953, DOI 10.1175/1520-0485(1995)025<2953:UOICFB>2.0.CO
[10]  
2