A finite volume method for solving the two-sided time-space fractional advection-dispersion equation

被引:24
作者
Hejazi, Hala [1 ]
Moroney, Timothy [1 ]
Liu, Fawang [1 ]
机构
[1] Queensland Univ Technol, Sch Math Sci, Brisbane, Qld 4001, Australia
来源
CENTRAL EUROPEAN JOURNAL OF PHYSICS | 2013年 / 11卷 / 10期
关键词
two-sided time-space fractional advection-dispersion; fractional Fick's law; finite volume; finite difference; shifted Grunwald; ANOMALOUS DIFFUSION;
D O I
10.2478/s11534-013-0317-y
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a finite volume method to solve the time-space two-sided fractional advection-dispersion equation on a one-dimensional domain. The spatial discretisation employs fractionally-shifted Grunwald formulas to discretise the Riemann-Liouville fractional derivatives at control volume faces in terms of function values at the nodes. We demonstrate how the finite volume formulation provides a natural, convenient and accurate means of discretising this equation in conservative form, compared to using a conventional finite difference approach. Results of numerical experiments are presented to demonstrate the effectiveness of the approach.
引用
收藏
页码:1275 / 1283
页数:9
相关论文
共 27 条
[1]  
[Anonymous], 1999, FRACTIONAL DIFFERENT
[2]   Stability and convergence of a finite volume method for the space fractional advection-dispersion equation [J].
Hejazi, H. ;
Moroney, T. ;
Liu, F. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 255 :684-697
[3]  
Kim S., 2006, J HYDRO ENG, V1
[4]   Finite difference/spectral approximations for the time-fractional diffusion equation [J].
Lin, Yumin ;
Xu, Chuanju .
JOURNAL OF COMPUTATIONAL PHYSICS, 2007, 225 (02) :1533-1552
[5]   Finite difference approximations for two-sided space-fractional partial differential equations [J].
Meerschaert, MM ;
Tadjeran, C .
APPLIED NUMERICAL MATHEMATICS, 2006, 56 (01) :80-90
[6]   Finite difference methods for two-dimensional fractional dispersion equation [J].
Meerschaert, MM ;
Scheffler, HP ;
Tadjeran, C .
JOURNAL OF COMPUTATIONAL PHYSICS, 2006, 211 (01) :249-261
[7]   Finite difference approximations for fractional advection-dispersion flow equations [J].
Meerschaert, MM ;
Tadjeran, C .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2004, 172 (01) :65-77
[8]   The random walk's guide to anomalous diffusion: a fractional dynamics approach [J].
Metzler, R ;
Klafter, J .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2000, 339 (01) :1-77
[9]   Non-standard finite difference schemes for solving fractional-order Rossler chaotic and hyperchaotic systems [J].
Moaddy, K. ;
Hashim, I. ;
Momani, S. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 62 (03) :1068-1074
[10]   The non-standard finite difference scheme for linear fractional PDEs in fluid mechanics [J].
Moaddy, K. ;
Momani, S. ;
Hashim, I. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 61 (04) :1209-1216