Some algebraic identities for the α-permanent

被引:6
作者
Crane, Harry [1 ]
机构
[1] Rutgers State Univ, Dept Stat, Piscataway, NJ 08854 USA
基金
美国国家科学基金会;
关键词
Permanent; alpha-Permanent; Determinant; Immanant; Rencontres number;
D O I
10.1016/j.laa.2013.09.028
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The permanent of a matrix is a linear combination of determinants of block diagonal matrices which are simple functions of the original matrix. To prove this, we first show a more general identity involving alpha-permanents: for arbitrary complex numbers alpha and beta, we show that the alpha-permanent of any matrix can be expressed as a linear combination of beta-permanents of related matrices. Some other identities for the alpha-permanent of sums and products of matrices are shown, as well as a relationship between the alpha-permanent and general immanants. We conclude with some discussion, and a conjecture for the computational complexity of the alpha-permanent, and provide some numerical illustrations. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:3445 / 3459
页数:15
相关论文
共 19 条
[1]   Determinantal Processes and Independence [J].
Ben Hough, J. ;
Krishnapur, Manjunath ;
Peres, Yuval ;
Virag, Balint .
PROBABILITY SURVEYS, 2006, 3 :206-229
[2]   Permanental Partition Models and Markovian Gibbs Structures [J].
Crane, Harry .
JOURNAL OF STATISTICAL PHYSICS, 2013, 153 (04) :698-726
[3]  
Crane H, 2011, J APPL PROBAB, V48, P778
[4]  
EWENS WJ, 1972, THEOR POPUL BIOL, V3, P87, DOI 10.1016/0040-5809(72)90035-4
[5]  
Fulton W., 1991, GRADUATE TEXTS MATH
[6]   A polynomial-time approximation algorithm for the permanent of a matrix with nonnegative entries [J].
Jerrum, M ;
Sinclair, A ;
Vigoda, E .
JOURNAL OF THE ACM, 2004, 51 (04) :671-697
[7]   Approximating the α-permanent [J].
Kou, S. C. ;
McCullagh, P. .
BIOMETRIKA, 2009, 96 (03) :635-644
[8]  
Linial N., 1998, P 30 ACM S THEOR COM
[9]  
Marcus M., 1961, ILLINOIS J MATH, V5, P376, DOI DOI 10.1215/IJM/1255630882
[10]  
McCullagh P., 2012, J STAT COMPUT SIM, P1