Normalization of Linear Support Vector Machines

被引:7
|
作者
Feng, Yiyong [1 ]
Palomar, Daniel P. [1 ]
机构
[1] Hong Kong Univ Sci & Technol, Dept Elect & Comp Engn, Kowloon, Hong Kong, Peoples R China
关键词
Convex optimization; normalizations; support vector machines; unified framework;
D O I
10.1109/TSP.2015.2443730
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we start with the standard support vector machine (SVM) formulation and extend it by considering a general SVM formulation with normalized margin. This results in a unified convex framework that allows many different variations in the formulation with very diverse numerical performance. The proposed unified framework can capture the existing methods, i.e., standard soft-margin SVM, l(1)-SVM, and SVMs with standardization, feature selection, scaling, and many more SVMs, as special cases. Furthermore, our proposed framework can not only provide us with more insights on different SVMs from the "energy" and "penalty" point of views, which help us understand the connections and differences between them in a unified way, but also enable us to propose more SVMs that outperform the existing ones under some scenarios.
引用
收藏
页码:4673 / 4688
页数:16
相关论文
共 50 条
  • [21] Selective support vector machines
    Seref, Onur
    Kundakcioglu, O. Erhun
    Prokopyev, Oleg A.
    Pardalos, Panos M.
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2009, 17 (01) : 3 - 20
  • [22] Sparseness of support vector machines
    Steinwart, I
    JOURNAL OF MACHINE LEARNING RESEARCH, 2004, 4 (06) : 1071 - 1105
  • [23] Faster Support Vector Machines
    Schlag S.
    Schmitt M.
    Schulz C.
    ACM Journal of Experimental Algorithmics, 2021, 26
  • [24] Binarized Support Vector Machines
    Carrizosa, Emilio
    Martin-Barragan, Belen
    Morales, Dolores Romero
    INFORMS JOURNAL ON COMPUTING, 2010, 22 (01) : 154 - 167
  • [25] Support Vector Machines in R
    Karatzoglou, A
    Meyer, D
    Hornik, K
    JOURNAL OF STATISTICAL SOFTWARE, 2006, 15 (09):
  • [26] On coresets for support vector machines
    Tukan, Murad
    Baykal, Cenk
    Feldman, Dan
    Rus, Daniela
    THEORETICAL COMPUTER SCIENCE, 2021, 890 (890) : 171 - 191
  • [27] Possibilistic support vector machines
    Lee, K
    Kim, DW
    Lee, KH
    Lee, D
    PATTERN RECOGNITION, 2005, 38 (08) : 1325 - 1327
  • [28] Directional Support Vector Machines
    Pernes, Diogo
    Fernande, Kelwin
    Cardoso, Jaime S.
    APPLIED SCIENCES-BASEL, 2019, 9 (04):
  • [29] Ellipsoidal Support Vector Machines
    Momma, Michinari
    Hatano, Kohei
    Nakayama, Hiroki
    PROCEEDINGS OF 2ND ASIAN CONFERENCE ON MACHINE LEARNING (ACML2010), 2010, 13 : 31 - 46
  • [30] Linear and Non-linear Quantification of the Respiratory Sinus Arrhythmia Using Support Vector Machines
    Morales, John
    Borzee, Pascal
    Testelmans, Dries
    Buyse, Bertien
    Van Huffel, Sabine
    Varon, Carolina
    FRONTIERS IN PHYSIOLOGY, 2021, 12