Averaging theory at any order for computing periodic orbits

被引:46
作者
Gine, Jaume [1 ]
Grau, Maite [1 ]
Llibre, Jaume [2 ]
机构
[1] Univ Lleida, Dept Matemat, Lleida 25001, Catalonia, Spain
[2] Univ Autonoma Barcelona, Dept Matemat, E-08193 Barcelona, Catalonia, Spain
关键词
First-order analytic differential equations; Averaging theory; Polynomial differential equations; Limit cycles; Periodic orbits; DIFFERENTIAL-SYSTEMS; SMALL-PARAMETER; LIMIT-CYCLES;
D O I
10.1016/j.physd.2013.01.015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We provide a recurrence formula for the coefficients of the powers of a in the series expansion of the solutions around epsilon = 0 of the perturbed first-order differential equations. Using it, we give an averaging theory at any order in epsilon for the following two kinds of analytic differential equation: dx/d theta = Sigma(k >= 1) epsilon F-k(k)(theta, x), dx/d theta = Sigma(k >= 0) epsilon F-k(k)(theta,x). A planar polynomial differential system with a singular point at the origin can be transformed, using polar coordinates, to an equation of the previous form. Thus, we apply our results for studying the limit cycles of a planar polynomial differential systems. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:58 / 65
页数:8
相关论文
共 14 条
[1]  
[Anonymous], 2007, Appl. Math. Sci
[2]  
[Anonymous], 1956, Some Problems of the Theory of Nonlinear Oscillations
[3]   Averaging methods for finding periodic orbits via Brouwer degree [J].
Buica, A ;
Llibre, J .
BULLETIN DES SCIENCES MATHEMATIQUES, 2004, 128 (01) :7-22
[4]  
Buica A, 2007, COMMUN PUR APPL ANAL, V6, P103
[5]   A second order analysis of the periodic solutions for nonlinear periodic differential systems with a small parameter [J].
Buica, Adriana ;
Gine, Jaume ;
Llibre, Jaume .
PHYSICA D-NONLINEAR PHENOMENA, 2012, 241 (05) :528-533
[6]   Periodic orbits for perturbed non-autonomous differential equations [J].
Coll, B. ;
Gasull, A. ;
Prohens, R. .
BULLETIN DES SCIENCES MATHEMATIQUES, 2012, 136 (07) :803-819
[7]   The center problem via averaging method [J].
Garcia, Isaac A. ;
Gine, Jaume .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 351 (01) :334-339
[8]   Limit cycles of cubic polynomial vector fields via the averaging theory [J].
Gine, Jaume ;
Llibre, Jaume .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2007, 66 (08) :1707-1721
[9]   The number of limit cycles due to polynomial perturbations of the harmonic oscillator [J].
Iliev, ID .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1999, 127 :317-322
[10]  
Roseau M., 1966, Vibrations non lineaires et theorie de la stabilite, V8