Averaging theory at any order for computing periodic orbits

被引:43
作者
Gine, Jaume [1 ]
Grau, Maite [1 ]
Llibre, Jaume [2 ]
机构
[1] Univ Lleida, Dept Matemat, Lleida 25001, Catalonia, Spain
[2] Univ Autonoma Barcelona, Dept Matemat, E-08193 Barcelona, Catalonia, Spain
关键词
First-order analytic differential equations; Averaging theory; Polynomial differential equations; Limit cycles; Periodic orbits; DIFFERENTIAL-SYSTEMS; SMALL-PARAMETER; LIMIT-CYCLES;
D O I
10.1016/j.physd.2013.01.015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We provide a recurrence formula for the coefficients of the powers of a in the series expansion of the solutions around epsilon = 0 of the perturbed first-order differential equations. Using it, we give an averaging theory at any order in epsilon for the following two kinds of analytic differential equation: dx/d theta = Sigma(k >= 1) epsilon F-k(k)(theta, x), dx/d theta = Sigma(k >= 0) epsilon F-k(k)(theta,x). A planar polynomial differential system with a singular point at the origin can be transformed, using polar coordinates, to an equation of the previous form. Thus, we apply our results for studying the limit cycles of a planar polynomial differential systems. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:58 / 65
页数:8
相关论文
共 14 条
  • [1] [Anonymous], 2007, Appl. Math. Sci
  • [2] [Anonymous], 1956, Some Problems of the Theory of Nonlinear Oscillations
  • [3] Averaging methods for finding periodic orbits via Brouwer degree
    Buica, A
    Llibre, J
    [J]. BULLETIN DES SCIENCES MATHEMATIQUES, 2004, 128 (01): : 7 - 22
  • [4] Buica A, 2007, COMMUN PUR APPL ANAL, V6, P103
  • [5] A second order analysis of the periodic solutions for nonlinear periodic differential systems with a small parameter
    Buica, Adriana
    Gine, Jaume
    Llibre, Jaume
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2012, 241 (05) : 528 - 533
  • [6] Periodic orbits for perturbed non-autonomous differential equations
    Coll, B.
    Gasull, A.
    Prohens, R.
    [J]. BULLETIN DES SCIENCES MATHEMATIQUES, 2012, 136 (07): : 803 - 819
  • [7] The center problem via averaging method
    Garcia, Isaac A.
    Gine, Jaume
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 351 (01) : 334 - 339
  • [8] Limit cycles of cubic polynomial vector fields via the averaging theory
    Gine, Jaume
    Llibre, Jaume
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2007, 66 (08) : 1707 - 1721
  • [9] The number of limit cycles due to polynomial perturbations of the harmonic oscillator
    Iliev, ID
    [J]. MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1999, 127 : 317 - 322
  • [10] Roseau M., 1966, Vibrations non lineaires et theorie de la stabilite, V8