Searching for axion stars and Q-balls with a terrestrial magnetometer network

被引:47
作者
Kimball, D. F. Jackson [1 ]
Budker, D. [2 ,3 ,4 ,5 ]
Eby, J. [6 ,7 ]
Pospelov, M. [8 ,9 ]
Pustelny, S. [10 ]
Scholtes, T. [11 ]
Stadnik, Y. V. [2 ,3 ]
Weis, A. [11 ]
Wickenbrock, A. [2 ]
机构
[1] Calif State Univ East Bay, Dept Phys, Hayward, CA 94542 USA
[2] Johannes Gutenberg Univ Mainz, D-55128 Mainz, Germany
[3] Helmholtz Inst Mainz, D-55099 Mainz, Germany
[4] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[5] Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA
[6] Univ Cincinnati, Dept Phys, Cincinnati, OH 45221 USA
[7] Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA
[8] Univ Victoria, Dept Phys & Astron, Victoria, BC V8P 1A1, Canada
[9] Perimeter Inst Theoret Phys, Waterloo, ON N2J 2W9, Canada
[10] Jagiellonian Univ, Inst Phys, PL-30059 Krakow, Poland
[11] Univ Fribourg, Dept Phys, CH-1700 Fribourg, Switzerland
基金
欧洲研究理事会; 加拿大自然科学与工程研究理事会; 美国国家科学基金会;
关键词
DARK-MATTER; PARTICLE PHYSICS; CANDIDATES; EVOLUTION;
D O I
10.1103/PhysRevD.97.043002
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Light (pseudo-)scalar fields are promising candidates to be the dark matter in the Universe. Under certain initial conditions in the early Universe and/or with certain types of self-interactions, they can form compact dark-matter objects such as axion stars or Q-balls. Direct encounters with such objects can be searched for by using a global network of atomic magnetometers. It is shown that for a range of masses and radii not ruled out by existing observations, the terrestrial encounter rate with axion stars or Q-balls can be sufficiently high (at least once per year) for a detection. Furthermore, it is shown that a global network of atomic magnetometers is sufficiently sensitive to pseudoscalar couplings to atomic spins so that a transit through an axion star or Q-ball could be detected over a broad range of unexplored parameter space.
引用
收藏
页数:10
相关论文
共 96 条
[41]   Axion minicluster power spectrum and mass function [J].
Enander, Jonas ;
Pargner, Andreas ;
Schwetz, Thomas .
JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2017, (12)
[42]   Dark Matter Candidates from Particle Physics and Methods of Detection [J].
Feng, Jonathan L. .
ANNUAL REVIEW OF ASTRONOMY AND ASTROPHYSICS, VOL 48, 2010, 48 :495-545
[43]   COSMIC EVOLUTION OF NONTOPOLOGICAL SOLITONS [J].
FRIEMAN, JA ;
OLINTO, AV ;
GLEISER, M ;
ALCOCK, C .
PHYSICAL REVIEW D, 1989, 40 (10) :3241-3251
[44]   Constraining dark matter sub-structure with the dynamics of astrophysical systems [J].
Gonzalez-Morales, Alma X. ;
Valenzuela, Octavio ;
Aguilar, Luis A. .
JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2013, (03)
[45]   Astronomical Signatures of Dark Matter [J].
Gorenstein, Paul ;
Tucker, Wallace .
ADVANCES IN HIGH ENERGY PHYSICS, 2014, 2014
[46]   FEMTOLENSING OF GAMMA-RAY BURSTERS [J].
GOULD, A .
ASTROPHYSICAL JOURNAL, 1992, 386 (01) :L5-L7
[47]   Cosmological Relaxation of the Electroweak Scale [J].
Graham, Peter W. ;
Kaplan, David E. ;
Rajendran, Surjeet .
PHYSICAL REVIEW LETTERS, 2015, 115 (22)
[48]   New observables for direct detection of axion dark matter [J].
Graham, Peter W. ;
Rajendran, Surjeet .
PHYSICAL REVIEW D, 2013, 88 (03)
[49]   SOLITOSYNTHESIS - COSMOLOGICAL EVOLUTION OF NONTOPOLOGICAL SOLITONS [J].
GRIEST, K ;
KOLB, EW .
PHYSICAL REVIEW D, 1989, 40 (10) :3231-3240
[50]   Do dark matter axions form a condensate with long-range correlation? [J].
Guth, Alan H. ;
Hertzberg, Mark P. ;
Prescod-Weinstein, C. .
PHYSICAL REVIEW D, 2015, 92 (10)