Sharp estimates for iterated Green functions

被引:20
作者
Grunau, HC
Sweers, G
机构
[1] Univ Magdeburg, Fak Math, Inst Anal & Numer, D-39016 Magdeburg, Germany
[2] Delft Univ Technol, ITS, NL-2600 GA Delft, Netherlands
关键词
D O I
10.1017/S0308210500001542
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Optimal pointwise estimates from above and below are obtained for iterated (poly) harmonic Green functions corresponding to zero Dirichlet boundary conditions. For second-order elliptic operators, these estimates hold true on bounded C-1,C-1 domains. For higher-order elliptic operators we have to restrict ourselves to the polyharmonic operator on balls. We will also consider applications to non-cooperatively coupled elliptic systems and to the lifetime of conditioned Brownian motion.
引用
收藏
页码:91 / 120
页数:30
相关论文
共 21 条
[1]  
ANCONA A, 1982, CR ACAD SCI I-MATH, V294, P505
[2]  
[Anonymous], CRELLE J MATH
[3]  
[Anonymous], 1989, CAMBRIDGE TRACTS MAT
[4]  
Barbatis G., 1996, J. Operator Theory, V36, P179
[5]  
BOGGIO T, 1905, REND CIRC MAT PALERM, V20, P97
[6]  
CHUNG K. L., 1995, From Brownian Motion to Schrodinger's Equation, V312
[7]   Uniform anti-maximum principles [J].
Clément, P ;
Sweers, G .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2000, 164 (01) :118-154
[8]   THE LIFETIME OF CONDITIONED BROWNIAN-MOTION [J].
CRANSTON, M ;
MCCONNELL, TR .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1983, 65 (01) :1-11
[9]   Pointwise lower bounds on the heat kernels of higher order elliptic operators [J].
Davies, EB .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1999, 125 :105-111
[10]   L-p spectral theory of higher-order elliptic differential operators [J].
Davies, EB .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1997, 29 :513-546