Sigma-convergence of semilinear stochastic wave equations

被引:0
作者
Deugoue, Gabriel [1 ]
Woukeng, Jean Louis [1 ,2 ]
机构
[1] Univ Dschang, Dept Math & Comp Sci, POB 67, Dschang, Cameroon
[2] Heidelberg Univ, Interdisciplinary Ctr Sci Comp IWR, Neuenheimer Feld 205, D-69120 Heidelberg, Germany
来源
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS | 2018年 / 25卷 / 01期
关键词
Semilinear stochastic wave equation; Homogenization; Algebras with mean value; Sigma-convergence; PARTIAL-DIFFERENTIAL-EQUATIONS; GENERALIZED BESICOVITCH SPACES; NAVIER-STOKES EQUATIONS; PERFORATED DOMAINS; MEAN-VALUE; HOMOGENIZATION; ALGEBRAS; DYNAMICS; COEFFICIENTS;
D O I
10.1007/s00030-017-0494-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We address the homogenization of a semilinear hyperbolic stochastic partial differential equation with highly oscillating coefficients, in the context of ergodic algebras with mean value. To achieve our goal, we use a suitable variant of the sigma-convergence concept that takes into account both the random and deterministic behaviours of the phenomenon modelled by the underlying problem. We also provide an appropriate scheme for the approximation of the effective coefficients. To illustrate our approach, we work out some concrete problems such as the periodic homogenization problem, the almost periodic and the asymptotically almost periodic ones.
引用
收藏
页数:29
相关论文
共 40 条
[1]   On a priori error analysis of fully discrete heterogeneous multiscale FEM [J].
Abdulle, A .
MULTISCALE MODELING & SIMULATION, 2005, 4 (02) :447-459
[2]  
[Anonymous], 1978, MEASURE INTEGRAL
[3]   STOCHASTIC NAVIER-STOKES EQUATIONS [J].
BENSOUSSAN, A .
ACTA APPLICANDAE MATHEMATICAE, 1995, 38 (03) :267-304
[4]  
Bensoussan A., 1990, PITMAN RES NOTES MAT, V268, P37
[5]  
Besicovitch A.S., 1954, Almost Periodic Functions, VVolume 4
[6]  
BOHR H., 1947, Almost Periodic Functions
[7]  
BOURGEAT A, 1994, J REINE ANGEW MATH, V456, P19
[8]   Approximations of effective coefficients in stochastic homogenization [J].
Bourgeat, A ;
Piatnitski, A .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2004, 40 (02) :153-165
[9]   The two-scale convergence method applied to generalized Besicovitch spaces [J].
Casado-Díaz, J ;
Gayte, I .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2002, 458 (2028) :2925-2946
[10]  
Chow P., 2014, STOCHASTIC PARTIAL D, Vsecond