A Dynamic Programming Approach for Approximate Optimal Control for Cancer Therapy

被引:2
作者
Nowakowski, A. [1 ]
Popa, A. [1 ]
机构
[1] Univ Lodz, Fac Math & Comp Sci, PL-90238 Lodz, Poland
关键词
Dynamic programming; epsilon-Optimal control problems; epsilon-Value function; Hamilton-Jacobi inequality; Cancer therapy; ANTIANGIOGENIC THERAPY; ANGIOGENESIS; RESISTANCE; MODEL;
D O I
10.1007/s10957-012-0137-z
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In the last 15 years, tumor anti-angiogenesis became an active area of research in medicine and also in mathematical biology, and several models of dynamics and optimal controls of angiogenesis have been described. We use the Hamilton-Jacobi approach to study the numerical analysis of approximate optimal solutions to some of those models earlier analysed from the point of necessary optimality conditions in the series of papers by Ledzewicz and Schaettler.
引用
收藏
页码:365 / 379
页数:15
相关论文
共 16 条
[1]   Antiangiogenic therapy of experimental cancer does not induce acquired drug resistance [J].
Boehm, T ;
Folkman, J ;
Browder, T ;
OReilly, MS .
NATURE, 1997, 390 (6658) :404-407
[2]  
Castaing C., 1977, CONVEX ANAL MEASURAB, V580, DOI DOI 10.1007/BFB0087686
[3]   Tumour eradication by antiangiogenic therapy: analysis and extensions of the model by Hahnfeldt et al. (1999) [J].
d'Onofrio, A ;
Gandolfi, A .
MATHEMATICAL BIOSCIENCES, 2004, 191 (02) :159-184
[4]   Rapidly acting antitumoral antiangiogenic therapies [J].
d'Onofrio, Alberto .
PHYSICAL REVIEW E, 2007, 76 (03)
[5]  
Fleming W. H., 2012, Deterministic and Stochastic Optimal Control
[6]  
Hahnfeldt P, 1999, CANCER RES, V59, P4770
[7]   Tumor angiogenesis: past, present and the near future [J].
Kerbel, RS .
CARCINOGENESIS, 2000, 21 (03) :505-515
[8]   A cancer therapy resistant to resistance [J].
Kerbel, RS .
NATURE, 1997, 390 (6658) :335-336
[9]   VEGF/VPF - THE ANGIOGENESIS FACTOR FOUND [J].
KLAGSBRUN, M ;
SOKER, S .
CURRENT BIOLOGY, 1993, 3 (10) :699-702
[10]   Optimal bang-bang controls for a two-compartment model in cancer chemotherapy [J].
Ledzewicz, U ;
Schättler, H .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2002, 114 (03) :609-637