Subnetwork-based analysis of chronic lymphocytic leukemia identifies pathways that associate with disease progression

被引:60
作者
Chuang, Han-Yu [2 ,3 ,4 ]
Rassenti, Laura [3 ,4 ]
Salcedo, Michelle [5 ]
Licon, Kate [2 ,3 ]
Kohlmann, Alexander [6 ]
Haferlach, Torsten [7 ]
Foa, Robin [8 ]
Ideker, Trey [1 ,2 ,3 ,4 ]
Kipps, Thomas J. [3 ,4 ]
机构
[1] Univ Calif San Diego, SKAGGS, Bioinformat & Syst Biol Program, La Jolla, CA 92093 USA
[2] Univ Calif San Diego, Dept Bioengn, La Jolla, CA 92093 USA
[3] Univ Calif San Diego, Dept Med, La Jolla, CA 92093 USA
[4] Univ Calif San Diego, Moores Canc Ctr, La Jolla, CA 92093 USA
[5] Univ Calif San Diego, Div Biol Sci, La Jolla, CA 92093 USA
[6] Roche Mol Syst Inc, Dept Genom & Oncol, Pleasanton, CA USA
[7] MLL Munchner Leukamielabor GmbH, Munich, Germany
[8] Univ Roma La Sapienza, Div Hematol, Rome, Italy
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
INTERACTION NETWORK DATABASE; PROTEIN INTERACTION NETWORK; GENE-EXPRESSION PROFILE; GROWTH-FACTOR-BETA; B-CELLS; MUTATION STATUS; BREAST-CANCER; CLASSIFICATION; ACTIVATION; REPOSITORY;
D O I
10.1182/blood-2012-03-416461
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
The clinical course of patients with chronic lymphocytic leukemia (CLL) is heterogeneous. Several prognostic factors have been identified that can stratify patients into groups that differ in their relative tendency for disease progression and/or survival. Here, we pursued a subnetwork-based analysis of gene expression profiles to discriminate between groups of patients with disparate risks for CLL progression. From an initial cohort of 130 patients, we identified 38 prognostic subnetworks that could predict the relative risk for disease progression requiring therapy from the time of sample collection, more accurately than established markers. The prognostic power of these subnetworks then was validated on 2 other cohorts of patients. We noted reduced divergence in gene expression between leukemia cells of CLL patients classified at diagnosis with aggressive versus indolent disease over time. The predictive subnetworks vary in levels of expression over time but exhibit increased similarity at later time points before therapy, suggesting that degenerate pathways apparently converge into common pathways that are associated with disease progression. As such, these results have implications for understanding cancer evolution and for the development of novel treatment strategies for patients with CLL. (Blood. 2012; 120(13):2639-2649)
引用
收藏
页码:2639 / 2649
页数:11
相关论文
共 52 条
[21]   Unmutated Ig VH genes are associated with a more aggressive form of chronic lymphocytic leukemia [J].
Hamblin, TJ ;
Davis, Z ;
Gardiner, A ;
Oscier, DG ;
Stevenson, FK .
BLOOD, 1999, 94 (06) :1848-1854
[22]   Microarray gene expression profiling of B-cell chronic lymphocytic leukemia subgroups defined by genomic aberrations and VH mutation status [J].
Haslinger, C ;
Schweifer, N ;
Stilgenbauer, S ;
Döhner, H ;
Lichter, P ;
Kraut, N ;
Stratowa, C ;
Abseher, R .
JOURNAL OF CLINICAL ONCOLOGY, 2004, 22 (19) :3937-3949
[23]   The lymph node microenvironment promotes B-cell receptor signaling, NF-κB activation, and tumor proliferation in chronic lymphocytic leukemia [J].
Herishanu, Yair ;
Perez-Galan, Patricia ;
Liu, Delong ;
Biancotto, Angelique ;
Pittaluga, Stefania ;
Vire, Berengere ;
Gibellini, Federica ;
Njuguna, Ndegwa ;
Lee, Elinor ;
Stennett, Lawrence ;
Raghavachari, Nalini ;
Liu, Poching ;
McCoy, J. Philip ;
Raffeld, Mark ;
Stetler-Stevenson, Maryalice ;
Yuan, Constance ;
Sherry, Richard ;
Arthur, Diane C. ;
Maric, Irina ;
White, Therese ;
Marti, Gerald E. ;
Munson, Peter ;
Wilson, Wyndham H. ;
Wiestner, Adrian .
BLOOD, 2011, 117 (02) :563-574
[24]   TCL1 shows a regulated expression pattern in chronic lymphocytic leukemia that correlates with molecular subtypes and proliferative state [J].
Herling, M ;
Patel, KA ;
Khalili, J ;
Schlette, E ;
Kobayashi, R ;
Medeiros, LJ ;
Jones, D .
LEUKEMIA, 2006, 20 (02) :280-285
[25]   High TCL1 levels are a marker of B-cell receptor pathway responsiveness and adverse outcome in chronic lymphocytic leukemia [J].
Herling, Marco ;
Patel, Kaushali A. ;
Weit, Nicole ;
Lilienthal, Nils ;
Hallek, Michael ;
Keating, Michael J. ;
Jones, Dan .
BLOOD, 2009, 114 (21) :4675-4686
[26]   Reactome: a knowledgebase of biological pathways [J].
Joshi-Tope, G ;
Gillespie, M ;
Vastrik, I ;
D'Eustachio, P ;
Schmidt, E ;
de Bono, B ;
Jassal, B ;
Gopinath, GR ;
Wu, GR ;
Matthews, L ;
Lewis, S ;
Birney, E ;
Stein, L .
NUCLEIC ACIDS RESEARCH, 2005, 33 :D428-D432
[27]   Gene expression profiling of B cell chronic lymphocytic leukemia reveals a homogeneous phenotype related to memory B cells [J].
Klein, U ;
Tu, YH ;
Stolovitzky, GA ;
Mattioli, M ;
Cattoretti, G ;
Husson, H ;
Freedman, A ;
Inghirami, G ;
Cro, L ;
Baldini, L ;
Neri, AN ;
Califano, A ;
Dalla-Favera, R .
JOURNAL OF EXPERIMENTAL MEDICINE, 2001, 194 (11) :1625-1638
[28]   An international standardization programme towards the application of gene expression profiling in routine leukaemia diagnostics: the Microarray Innovations in LEukemia study prephase [J].
Kohlmann, Alexander ;
Kipps, Thomas J. ;
Rassenti, Laura Z. ;
Downing, James R. ;
Shurtleff, Sheila A. ;
Mills, Ken I. ;
Gilkes, Amanda F. ;
Hofmann, Wolf-Karsten ;
Basso, Giuseppe ;
Dell'Orto, Marta Campo ;
Foa, Robin ;
Chiaretti, Sabina ;
De Vos, John ;
Rauhut, Sonja ;
Papenhausen, Peter R. ;
Hernandez, Jesus M. ;
Lumbreras, Eva ;
Yeoh, Allen E. ;
Koay, Evelyn S. ;
Li, Rachel ;
Liu, Wei-Min ;
Williams, Paul M. ;
Wieczorek, Lothar ;
Haferlach, Torsten .
BRITISH JOURNAL OF HAEMATOLOGY, 2008, 142 (05) :802-807
[29]   Inferring Pathway Activity toward Precise Disease Classification [J].
Lee, Eunjung ;
Chuang, Han-Yu ;
Kim, Jong-Won ;
Ideker, Trey ;
Lee, Doheon .
PLOS COMPUTATIONAL BIOLOGY, 2008, 4 (11)
[30]   TRANSFORMING GROWTH-FACTOR-BETA AS ENDOGENOUS GROWTH INHIBITOR OF CHRONIC LYMPHOCYTIC-LEUKEMIA B-CELLS [J].
LOTZ, M ;
RANHEIM, E ;
KIPPS, TJ .
JOURNAL OF EXPERIMENTAL MEDICINE, 1994, 179 (03) :999-1004