Excellent stability of spinel LiMn2O4-based composites for lithium ion batteries

被引:49
作者
Xiong, Lilong [1 ,2 ,3 ]
Xu, Youlong [1 ,2 ]
Tao, Tao [1 ,2 ]
Song, Jie [3 ]
Goodenough, John B. [3 ]
机构
[1] Xi An Jiao Tong Univ, Elect Mat Res Lab, Key Lab, Minist Educ, Xian 710049, Peoples R China
[2] Xi An Jiao Tong Univ, Int Ctr Dielect Res, Xian 710049, Peoples R China
[3] Univ Texas Austin, Texas Mat Inst, Austin, TX 78712 USA
基金
中国国家自然科学基金;
关键词
ELECTRODE MATERIALS; LATTICE-PARAMETER; INSERTION; CAPACITY; PERFORMANCE; FLUORINE; FAILURE; ZN; MN; NI;
D O I
10.1039/c2jm34717b
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Spinel LiMn2O4-based composites with cation (Li+)/anion (F-) co-doping and Li2MnO3 thin surface coating are synthesized by one-step solid-state reaction. The composites modified with body-doping and surface-coating exhibits excellent cycling performance and high rate capability. The LF04 sample tested at 1 C rate exhibits only 1.2% capacity loss after 1000 cycles at room temperature; and when cycling at 55 degrees C, the composite still shows 94.3% capacity retention after 100 cycles. As the charge-discharge rate increases to 7 C, the as-prepared LiMn2O4-based composites deliver more than 95.5% capacity retention after 300 cycles at room temperature and exhibit an average value of coulombic efficiency more than 99.6%. The improved cycling performance of the composites is ascribed to double doping in the spinel structure and the coating on the surface of the spinel particles. The ionic doping could eliminate the problems with cooperative Jahn-Teller distortion and suppress Li+-ion order at 0.5 Li; and the inborn Li2MnO3 coating containing only Mn4+ ions, could prevent the disproportionation of Mn3+ on the surface.
引用
收藏
页码:24563 / 24568
页数:6
相关论文
共 31 条
[1]   The elevated temperature performance of the LiMn2O4/C system:: failure and solutions [J].
Amatucci, G ;
Du Pasquier, A ;
Blyr, A ;
Zheng, T ;
Tarascon, JM .
ELECTROCHIMICA ACTA, 1999, 45 (1-2) :255-271
[2]   Failure mechanism and improvement of the elevated temperature cycling of LiMn2O4 compounds through the use of the LiAlxMn2-xO4-zFz solid solution [J].
Amatucci, GG ;
Pereira, N ;
Zheng, T ;
Tarascon, JM .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2001, 148 (02) :A171-A182
[3]   Fluoride based electrode materials for advanced energy storage devices [J].
Amatucci, Glenn G. ;
Pereira, Nathalie .
JOURNAL OF FLUORINE CHEMISTRY, 2007, 128 (04) :243-262
[4]  
Ammundsen B, 1999, J PHYS CHEM B, V103, P5175, DOI 10.1021/jp9843981
[5]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[6]   Nanomaterials for rechargeable lithium batteries [J].
Bruce, Peter G. ;
Scrosati, Bruno ;
Tarascon, Jean-Marie .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (16) :2930-2946
[7]   Beyond Intercalation-Based Li-Ion Batteries: The State of the Art and Challenges of Electrode Materials Reacting Through Conversion Reactions [J].
Cabana, Jordi ;
Monconduit, Laure ;
Larcher, Dominique ;
Rosa Palacin, M. .
ADVANCED MATERIALS, 2010, 22 (35) :E170-E192
[8]   VOx-coated LiMn2O4 nanorod clusters for lithium battery cathode materials [J].
Cho, Jaephil .
JOURNAL OF MATERIALS CHEMISTRY, 2008, 18 (19) :2257-2261
[9]   Influence of fluorine on the electrochemical performance of spinel LiMn2-y-zLiyZnzO4-ηFη cathodes [J].
Choi, W. ;
Manthiram, A. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2007, 154 (07) :A614-A618
[10]   Lattice parameter as a measure of electrochemical properties of LiMn2O4 [J].
Chung, HT ;
Myung, ST ;
Cho, TH ;
Son, JT .
JOURNAL OF POWER SOURCES, 2001, 97-8 :454-457