Inverse free electron lasers and laser wakefield acceleration driven by CO2 lasers

被引:5
作者
Kimura, WD [1 ]
Andreev, NE
Babzien, M
Ben-Zvi, I
Cline, DB
Dilley, CE
Gottschalk, SC
Hooker, SM
Kusche, KP
Kuznetsov, SV
Pavlishin, IV
Pogorelsky, IV
Pogosova, AA
Steinhauer, LC
Ting, A
Yakimenko, V
Zigler, A
Zhou, F
机构
[1] STI Optron Inc, Bellevue, WA 98004 USA
[2] Brookhaven Natl Lab, Upton, NY 11973 USA
[3] Univ Calif Los Angeles, Los Angeles, CA 90095 USA
[4] Russian Acad Sci, Inst High Energy Densities, Moscow 125412, Russia
[5] Hebrew Univ Jerusalem, Racah Inst Phys, IL-91904 Jerusalem, Israel
[6] Univ Oxford, Oxford OX1 3PU, England
[7] Univ Washington, Redmond Plasma Phys Lab, Redmond, WA 98052 USA
[8] USN, Res Lab, Washington, DC 20375 USA
来源
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2006年 / 364卷 / 1840期
关键词
laser acceleration; laser wakefield acceleration; inverse free electron laser; CO2; laser; microbunch;
D O I
10.1098/rsta.2005.1726
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The staged electron laser acceleration (STELLA) experiment demonstrated staging between two laser-driven devices, high trapping efficiency of microbunches within the accelerating field and narrow energy spread during laser acceleration. These are important for practical laser-driven accelerators. STELLA used inverse free electron lasers, which were chosen primarily for convenience. Nevertheless, the STELLA approach can be applied to other laser acceleration methods, in particular, laser-driven plasma accelerators. STELLA is now conducting experiments on laser wakefield acceleration (LWFA). Two novel LWFA approaches are being investigated. In the first one, called pseudo-resonant LWFA, a laser pulse enters a low-density plasma where nonlinear laser/plasma interactions cause the laser pulse shape to steepen, thereby creating strong wakefields. A witness e-beam pulse probes the wakefields. The second one, called seeded self-modulated LWFA, involves sending a seed e-beam pulse into the plasma to initiate wakefield formation. These wakefields are amplified by a laser pulse following shortly after the seed pulse. A second e-beam pulse (witness) follows the seed pulse to probe the wakefields. These LWFA experiments will also be the first ones driven by a CO2 laser beam.
引用
收藏
页码:611 / 622
页数:12
相关论文
共 50 条
  • [41] RF generator for compact CO2 waveguide lasers
    López, R
    Villagómez, R
    OPTIK, 2006, 117 (03): : 138 - 140
  • [42] Pseudoresonant laser wakefield acceleration driven by 10.6-μm laser light
    Kimura, WD
    Andreev, NE
    Babzien, M
    Ben-Zvi, I
    Cline, DB
    Dilley, CE
    Gottschalk, SC
    Hooker, SA
    Kusche, KP
    Kuznetsov, SV
    Pavlishin, IV
    Pogorelsky, IV
    Pogosova, AA
    Steinhauer, LC
    Ting, A
    Yakimenko, V
    Zigler, A
    Zhou, F
    IEEE TRANSACTIONS ON PLASMA SCIENCE, 2005, 33 (01) : 3 - 7
  • [43] Electron beam energy slicing performance in laser wakefield acceleration
    Oumbarek Espinos D.
    Pathak N.
    Zhidkov A.
    Hosokai T.
    Physics Letters, Section A: General, Atomic and Solid State Physics, 2022, 453
  • [44] Ultrafast CO2 laser technology: Application in ion acceleration
    Pogorelsky, I. V.
    Yakimenko, V.
    Polyanskiy, M.
    Shkolnikov, P.
    Ispiryan, M.
    Neely, D.
    McKenna, P.
    Carroll, D.
    Najmudin, Z.
    Willingale, L.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2010, 620 (01) : 67 - 70
  • [45] Mechanical characteristics of high-quality laser cutting of steel by fiber and CO2 lasers
    V. M. Fomin
    A. A. Golyshev
    A. G. Malikov
    A. M. Orishich
    V. B. Shulyat’ev
    Journal of Applied Mechanics and Technical Physics, 2015, 56 : 726 - 735
  • [46] Use of CVD diamond in high-power CO2 lasers and laser diode arrays
    Godfried, HP
    Coe, SE
    Hall, CE
    Pickles, CSJ
    Sussmann, RS
    Tang, X
    van der Voorden, WKL
    ADVANCED HIGH-POWER LASERS, 2000, 3889 : 553 - 563
  • [47] Experimental verification of revised roles played by helium and nitrogen in CO2 lasers
    Chang, SH
    Cheng, CC
    Chang, MF
    Tsai, HS
    Liu, HP
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS BRIEF COMMUNICATIONS & REVIEW PAPERS, 2000, 39 (01): : 82 - 85
  • [48] Magnetic field effects on electrical parameters of rf excited CO2 lasers
    Tavassoli, SH
    Latifi, H
    PHYSICS LETTERS A, 2005, 335 (04) : 295 - 303
  • [49] Numerical simulation of the processes in fast flow gas discharge CO2 lasers
    Galeev, RS
    Safioulline, RK
    ATOMIC AND MOLECULAR PULSED LASERS V, 2004, 5483 : 214 - 223
  • [50] Study on electro-optic Q switch for CO2 waveguide lasers
    Zhou, DF
    Jiang, D
    Zheng, CZ
    Huo, YH
    Chen, JG
    OPTICAL ENGINEERING, 2003, 42 (11) : 3315 - 3319