Inverse free electron lasers and laser wakefield acceleration driven by CO2 lasers

被引:5
作者
Kimura, WD [1 ]
Andreev, NE
Babzien, M
Ben-Zvi, I
Cline, DB
Dilley, CE
Gottschalk, SC
Hooker, SM
Kusche, KP
Kuznetsov, SV
Pavlishin, IV
Pogorelsky, IV
Pogosova, AA
Steinhauer, LC
Ting, A
Yakimenko, V
Zigler, A
Zhou, F
机构
[1] STI Optron Inc, Bellevue, WA 98004 USA
[2] Brookhaven Natl Lab, Upton, NY 11973 USA
[3] Univ Calif Los Angeles, Los Angeles, CA 90095 USA
[4] Russian Acad Sci, Inst High Energy Densities, Moscow 125412, Russia
[5] Hebrew Univ Jerusalem, Racah Inst Phys, IL-91904 Jerusalem, Israel
[6] Univ Oxford, Oxford OX1 3PU, England
[7] Univ Washington, Redmond Plasma Phys Lab, Redmond, WA 98052 USA
[8] USN, Res Lab, Washington, DC 20375 USA
来源
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2006年 / 364卷 / 1840期
关键词
laser acceleration; laser wakefield acceleration; inverse free electron laser; CO2; laser; microbunch;
D O I
10.1098/rsta.2005.1726
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The staged electron laser acceleration (STELLA) experiment demonstrated staging between two laser-driven devices, high trapping efficiency of microbunches within the accelerating field and narrow energy spread during laser acceleration. These are important for practical laser-driven accelerators. STELLA used inverse free electron lasers, which were chosen primarily for convenience. Nevertheless, the STELLA approach can be applied to other laser acceleration methods, in particular, laser-driven plasma accelerators. STELLA is now conducting experiments on laser wakefield acceleration (LWFA). Two novel LWFA approaches are being investigated. In the first one, called pseudo-resonant LWFA, a laser pulse enters a low-density plasma where nonlinear laser/plasma interactions cause the laser pulse shape to steepen, thereby creating strong wakefields. A witness e-beam pulse probes the wakefields. The second one, called seeded self-modulated LWFA, involves sending a seed e-beam pulse into the plasma to initiate wakefield formation. These wakefields are amplified by a laser pulse following shortly after the seed pulse. A second e-beam pulse (witness) follows the seed pulse to probe the wakefields. These LWFA experiments will also be the first ones driven by a CO2 laser beam.
引用
收藏
页码:611 / 622
页数:12
相关论文
共 50 条
  • [31] Evaluation of cutting quality of PMMA using CO2 lasers
    Davim, J. Paulo
    Oliveira, Carlos
    Barricas, Nuno
    Conceicao, Marta
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2008, 35 (9-10) : 875 - 879
  • [32] Fiber optic polishing by CO2 lasers
    Er, Ibrahim G.
    Ozer, M.
    SIX INTERNATIONAL CONFERENCE OF THE BALKAN PHYSICAL UNION, 2007, 899 : 794 - 794
  • [33] Laser wakefield and direct laser acceleration of electron by chirped laser pulses
    Ghotra, Harjit Singh
    OPTIK, 2022, 260
  • [34] Curative effect of chemotherapy, KTP lasers, and CO2 lasers combined with chemotherapy in the treatment of adult laryngeal hemangioma
    Wu, Xiufa
    Mao, Wenjing
    He, Peijie
    Wei, Chunsheng
    ACTA OTO-LARYNGOLOGICA, 2018, 138 (06) : 567 - 573
  • [35] LASER-ASSISTED MICROVASCULAR ANASTOMOSIS USING CO2 AND KTP/532 LASERS
    SAMONTE, BR
    FRIED, MP
    LASERS IN SURGERY AND MEDICINE, 1991, 11 (06) : 511 - 516
  • [36] Ultrashort-pulse CO2 lasers: Ready for the race to petawatt?
    Polyanskiy, Mikhail N.
    Babzien, Marcus
    Pogorelsky, Igor
    Yakimenko, Vitaly
    XIX INTERNATIONAL SYMPOSIUM ON HIGH-POWER LASER SYSTEMS AND APPLICATIONS 2012, 2013, 8677
  • [37] VRM resonator performance in high power CW CO2 lasers
    Bartels, H
    Generalov, NA
    Habich, U
    Solov'yov, NG
    Yakimov, MY
    Zimakov, VP
    GAS, LIQUID, AND FREE-ELECTRON LASERS - LASER OPTICS '98, 1999, 3686 : 121 - 129
  • [38] Temperature effects in RF excited CO2 lasers with unstable resonators
    Plinski, EF
    Witkowski, JS
    Majewski, BW
    Abramski, KM
    LASER RESONATORS AND BEAM CONTROL VI, 2003, 4969 : 89 - 96
  • [39] Numerical simulation of gas discharge CO2 lasers with conic tubes
    Galeev, RS
    Safiullin, RK
    INTERNATIONAL CONFERENCE ON LASERS, APPLICATIONS, AND TECHNOLOGIES 2005: HIGH-POWER LASERS AND APPLICATIONS, 2006, 6053
  • [40] Antireflection coating of diamond elements of power optics for CO2 lasers
    Pivovarov, P. A.
    Pavelyev, V. S.
    Soifer, V. A.
    Cherepanov, K., V
    Anisimov, V., I
    Butuzov, V. V.
    Sorochenko, V. R.
    Artyushkin, N., V
    Rogalin, V. E.
    Shchebetova, N., I
    Plotnichenko, V. G.
    Konov, V., I
    QUANTUM ELECTRONICS, 2018, 48 (11) : 1000 - 1004