An Aggregated Multicolumn Dilated Convolution Network for Perspective-Free Counting

被引:66
作者
Deb, Diptodip [1 ]
Ventura, Jonathan [2 ]
机构
[1] Georgia Inst Technol, Atlanta, GA 30332 USA
[2] Univ Colorado Colorado Springs, Colorado Springs, CO USA
来源
PROCEEDINGS 2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW) | 2018年
基金
美国国家科学基金会;
关键词
D O I
10.1109/CVPRW.2018.00057
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose the use of dilated filters to construct an aggregation module in a multicolumn convolutional neural network for perspective-free counting. Counting is a common problem in computer vision (e.g. traffic on the street or pedestrians in a crowd). Modern approaches to the counting problem involve the production of a density map via regression whose integral is equal to the number of objects in the image. However, objects in the image can occur at different scales (e.g. due to perspective effects) which can make it difficult for a learning agent to learn the proper density map. While the use of multiple columns to extract multiscale information from images has been shown before, our approach aggregates the multiscale information gathered by the multicolumn convolutional neural network to improve performance. Our experiments show that our proposed network outperforms the state-of-the-art on many benchmark datasets, and also that using our aggregation module in combination with a higher number of columns is beneficial for multiscale counting.
引用
收藏
页码:308 / 317
页数:10
相关论文
共 29 条
[11]   Attention to Scale: Scale-aware Semantic Image Segmentation [J].
Chen, Liang-Chieh ;
Yang, Yi ;
Wang, Jiang ;
Xu, Wei ;
Yuille, Alan L. .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :3640-3649
[12]  
Chollet F., 2015, about us
[13]   FlowNet: Learning Optical Flow with Convolutional Networks [J].
Dosovitskiy, Alexey ;
Fischer, Philipp ;
Ilg, Eddy ;
Haeusser, Philip ;
Hazirbas, Caner ;
Golkov, Vladimir ;
van der Smagt, Patrick ;
Cremers, Daniel ;
Brox, Thomas .
2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, :2758-2766
[14]   Learning Hierarchical Features for Scene Labeling [J].
Farabet, Clement ;
Couprie, Camille ;
Najman, Laurent ;
LeCun, Yann .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2013, 35 (08) :1915-1929
[15]  
Fiaschi L, 2012, INT C PATT RECOG, P2685
[16]  
Lempitsky V, 2010, ADV NEURAL INF PROCE, V23
[17]   Learning Deconvolution Network for Semantic Segmentation [J].
Noh, Hyeonwoo ;
Hong, Seunghoon ;
Han, Bohyung .
2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, :1520-1528
[18]   Towards Perspective-Free Object Counting with Deep Learning [J].
Onoro-Rubio, Daniel ;
Lopez-Sastre, Roberto J. .
COMPUTER VISION - ECCV 2016, PT VII, 2016, 9911 :615-629
[19]  
Pham V.-Q., 2003, P IEEE INT C COMP VI, P3253
[20]   Crowd Counting using Multiple Local Features [J].
Ryan, David ;
Denman, Simon ;
Fookes, Clinton ;
Sridharan, Sridha .
2009 DIGITAL IMAGE COMPUTING: TECHNIQUES AND APPLICATIONS (DICTA 2009), 2009, :81-88