Tuning of Structural Transition Pressure and Electronic Properties of Alkaline Earth Chalcogenides by Isoelectronic Substitution

被引:5
作者
Nag, Abhinav [1 ]
Kumari, Anuja [1 ]
Kumar, Jagdish [1 ]
机构
[1] Cent Univ Himachal Pradesh, Dept Phys & Astron Sci, Shahpur, India
关键词
Dirac point; band structure; spin-orbit interaction; equation of state; alkaline earth chalcogenides; density functional theory; TOPOLOGICAL DIRAC SEMIMETAL; BAND-STRUCTURE CALCULATIONS; ELASTIC PROPERTIES; CALCIUM CHALCOGENIDES; INDUCED METALLIZATION; AB-INITIO; EQUATION; STATE; SRSE; 1ST-PRINCIPLES;
D O I
10.1007/s11664-020-08196-6
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
CaTe exhibits Dirac-like linear dispersion in a simple cubic CsCl-type structure which is stable above pressure of 33 GPa. In the present paper, we have studied all the alkaline earth metal chalcogenides to check for the possibility of a structural transition pressure (P-s) below 33 GPa and also exhibiting Dirac-like linear dispersions as in CaTe. Our results show that a larger cation or anion increases the unit cell volume and lowers the P-s and vice versa. Although the P-s can be lowered by isoelectronic substitution, the Dirac-like electronic band dispersion around P-s is exhibited only by SrTe at 17 GPa which is almost half the P-s for CaTe. Interestingly, our study finds that in absence of spin-orbit interaction all studied alkaline chalcogenides exhibit Dirac-like dispersions at pressures ranging from 17 GPa for SrTe to 650 GPa for CaS, whereas a few retain Dirac-like dispersion even under the effect of spin-orbit interaction.
引用
收藏
页码:4773 / 4784
页数:12
相关论文
共 60 条
[11]   Dirac line nodes and effect of spin-orbit coupling in the nonsymmorphic critical semimetals MSiS (M = Hf, Zr) [J].
Chen, C. ;
Xu, X. ;
Jiang, J. ;
Wu, S. -C. ;
Qi, Y. P. ;
Yang, L. X. ;
Wang, M. X. ;
Sun, Y. ;
Schroeter, N. B. M. ;
Yang, H. F. ;
Schoop, L. M. ;
Lv, Y. Y. ;
Zhou, J. ;
Chen, Y. B. ;
Yao, S. H. ;
Lu, M. H. ;
Chen, Y. F. ;
Felser, C. ;
Yan, B. H. ;
Liu, Z. K. ;
Chen, Y. L. .
PHYSICAL REVIEW B, 2017, 95 (12)
[12]   Optical spectroscopy study of the three-dimensional Dirac semimetal ZrTe5 [J].
Chen, R. Y. ;
Zhang, S. J. ;
Schneeloch, J. A. ;
Zhang, C. ;
Li, Q. ;
Gu, G. D. ;
Wang, N. L. .
PHYSICAL REVIEW B, 2015, 92 (07)
[13]   REPRESENTATIONS OF DIRAC EQUATION IN GENERAL RELATIVITY [J].
DEOLIVEIRA, CG ;
TIOMNO, J .
NUOVO CIMENTO, 1962, 24 (04) :672-+
[14]  
Dewhurst K., 2016, AMBROSCH DRAXL
[15]   CaTe: a new topological node-line and Dirac semimetal [J].
Du, Yongping ;
Tang, Feng ;
Wang, Di ;
Sheng, Li ;
Kan, Er-Jun ;
Duan, Chun-Gang ;
Savrasov, Sergey Y. ;
Wan, Xiangang .
NPJ QUANTUM MATERIALS, 2017, 2
[16]   Dirac and Weyl Semimetal in XYBi (X = Ba, Eu; Y = Cu, Ag and Au) [J].
Du, Yongping ;
Wan, Bo ;
Wang, Di ;
Sheng, Li ;
Duan, Chun-Gang ;
Wan, Xiangang .
SCIENTIFIC REPORTS, 2015, 5
[17]  
Ebert H., 2005, The Munich SPR-KKR Package
[18]   Computational studies of mono-chalcogenides ZnS and ZnSe at high-pressures [J].
Ferahtia, S. ;
Saib, S. ;
Bouarissa, N. .
RESULTS IN PHYSICS, 2019, 15
[19]   The rise of graphene [J].
Geim, A. K. ;
Novoselov, K. S. .
NATURE MATERIALS, 2007, 6 (03) :183-191
[20]   QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials [J].
Giannozzi, Paolo ;
Baroni, Stefano ;
Bonini, Nicola ;
Calandra, Matteo ;
Car, Roberto ;
Cavazzoni, Carlo ;
Ceresoli, Davide ;
Chiarotti, Guido L. ;
Cococcioni, Matteo ;
Dabo, Ismaila ;
Dal Corso, Andrea ;
de Gironcoli, Stefano ;
Fabris, Stefano ;
Fratesi, Guido ;
Gebauer, Ralph ;
Gerstmann, Uwe ;
Gougoussis, Christos ;
Kokalj, Anton ;
Lazzeri, Michele ;
Martin-Samos, Layla ;
Marzari, Nicola ;
Mauri, Francesco ;
Mazzarello, Riccardo ;
Paolini, Stefano ;
Pasquarello, Alfredo ;
Paulatto, Lorenzo ;
Sbraccia, Carlo ;
Scandolo, Sandro ;
Sclauzero, Gabriele ;
Seitsonen, Ari P. ;
Smogunov, Alexander ;
Umari, Paolo ;
Wentzcovitch, Renata M. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2009, 21 (39)