Dynamics around the ground state of a nonlinear evolution equation

被引:33
作者
Esquivel-Avila, Jorge A. [1 ]
机构
[1] UAM Azcapotzalco, Dept Ciencias Basicas Anal Matemat & Sus Aplicac, Mexico City 02200, DF, Mexico
关键词
Evolution equation; Blowup; Boundedness; Asymptotic behavior; Backwards solutions;
D O I
10.1016/j.na.2005.02.108
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We analyze the qualitative behavior of solutions forwards and backwards. We present characterizations of blowup, boundedness and convergence to the ground state as t -> +/-infinity. We define and use a potential well and several invariant and positive invariant sets. (C) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:E331 / E343
页数:13
相关论文
共 14 条
[2]   STABILITY THEORY FOR AN EXTENSIBLE BEAM [J].
BALL, JM .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1973, 14 (03) :399-418
[4]   UNIFORM ESTIMATES FOR SOLUTIONS OF NONLINEAR KLEIN-GORDON EQUATIONS [J].
CAZENAVE, T .
JOURNAL OF FUNCTIONAL ANALYSIS, 1985, 60 (01) :36-55
[5]  
Chen GW, 2000, MATH METHOD APPL SCI, V23, P615, DOI 10.1002/(SICI)1099-1476(20000510)23:7<615::AID-MMA133>3.0.CO
[6]  
2-E
[7]  
Esquivel-Avila JA, 2004, PROCEEDINGS OF DYNAMIC SYSTEMS AND APPLICATIONS, VOL 4, P198
[8]   Qualitative analysis of a nonlinear wave equation [J].
Esquivel-Avila, JA .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2004, 10 (03) :787-804
[9]   The dynamics of a nonlinear wave equation [J].
Esquivel-Avila, JA .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2003, 279 (01) :135-150
[10]   A characterization of global and nonglobal solutions of nonlinear wave and Kirchhoff equations [J].
Esquivel-Avila, JA .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2003, 52 (04) :1111-1127