Stochastic Optimal Control of Finite Ensembles of Nanomagnets

被引:2
作者
Dunst, Thomas [1 ]
Prohl, Andreas [1 ]
机构
[1] Univ Tubingen, Math Inst, Morgenstelle 10, D-72076 Tubingen, Germany
关键词
Ferromagnetism; Stochastic optimal control; Forward-backward stochastic differential equation; Stochastic gradient method; Simulation; ELLIPSOIDAL SAMPLES;
D O I
10.1007/s10915-017-0474-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We control ferromagnetic N-spin dynamics in the presence of thermal fluctuations by minimizing a quadratic functional subject to the stochastic Landau-Lifshitz-Gilbert equation. Existence of a weak solution of the stochastic optimal control problem is shown. The related first order optimality conditions consist of a coupled forward-backward SDE system, which is numerically solved by a structure-inheriting discretization, the least squares Monte-Carlo method to approximate related conditional expectations, and the new stochastic gradient method. Computational experiments are reported which motivate optimal controls in the case of interacting anisotropy, stray field, exchange energies, and acting noise.
引用
收藏
页码:872 / 894
页数:23
相关论文
共 15 条
[1]   CONTROL OF A NETWORK OF MAGNETIC ELLIPSOIDAL SAMPLES [J].
Agarwal, Shruti ;
Carbou, Gilles ;
Labbe, Stephane ;
Prieur, Christophe .
MATHEMATICAL CONTROL AND RELATED FIELDS, 2011, 1 (02) :129-147
[2]   MAGNETIZATION SWITCHING ON SMALL FERROMAGNETIC ELLIPSOIDAL SAMPLES [J].
Alouges, Francois ;
Beauchard, Karine .
ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2009, 15 (03) :676-711
[3]  
Banas L., 2013, DEGRUYTER STUDIES MA, V58
[4]   Time discretization and Markovian iteration for coupled FBSDES [J].
Bender, Christian ;
Zhang, Jianfeng .
ANNALS OF APPLIED PROBABILITY, 2008, 18 (01) :143-177
[5]  
Bertotti G, 2009, ELSEVIER SERIES ELEC
[6]   The forward-backward stochastic heat equation: Numerical analysis and simulation [J].
Dunst T. ;
Prohl A. .
SIAM Journal on Scientific Computing, 2016, 38 (05) :A2725-A2755
[7]   Optimal control in evolutionary micromagnetism [J].
Dunst, Thomas ;
Klein, Markus ;
Prohl, Andreas .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2015, 35 (03) :1342-1380
[8]  
ELKAROUI N, 1997, PITMAN RES NOTES MAT, P00027
[9]   A PROBABILISTIC NUMERICAL METHOD FOR FULLY NONLINEAR PARABOLIC PDES [J].
Fahim, Arash ;
Touzi, Nizar ;
Warin, Xavier .
ANNALS OF APPLIED PROBABILITY, 2011, 21 (04) :1322-1364
[10]   Single-Molecule Nanomagnets [J].
Friedman, Jonathan R. ;
Sarachik, Myriam P. .
ANNUAL REVIEW OF CONDENSED MATTER PHYSICS, VOL 1, 2010, 1 :109-128