The effect of aspect ratio on the leading-edge vortex over an insect-like flapping wing

被引:68
|
作者
Phillips, Nathan [1 ]
Knowles, Kevin
Bomphrey, Richard J. [1 ]
机构
[1] Univ London, Royal Vet Coll, Struct & Mot Lab, Hatfield AL9 7TA, Herts, England
基金
英国工程与自然科学研究理事会;
关键词
leading-edge vortex; flapping wing; micro air vehicle; aspect ratio; PARTICLE IMAGE VELOCIMETRY; LIFT-GENERATING MECHANISMS; MICRO AIR VEHICLES; REVOLVING WINGS; MODEL HAWKMOTH; MANDUCA-SEXTA; FLIGHT; AERODYNAMICS; VORTICES; FLOW;
D O I
10.1088/1748-3190/10/5/056020
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Insect wing shapes are diverse and a renowned source of inspiration for the new generation of autonomous flapping vehicles, yet the aerodynamic consequences of varying geometry is not well understood. One of the most defining and aerodynamically significant measures of wing shape is the aspect ratio, defined as the ratio of wing length (R) to mean wing chord ((c) over bar). We investigated the impact of aspect ratio, AR, on the induced flow field around a flapping wing using a robotic device. Rigid rectangular wings ranging from AR = 1.5 to 7.5 were flapped with insect-like kinematics in air with a constant Reynolds number (Re) of 1400, and a dimensionless stroke amplitude of 6.5 (c) over bar (number of chords traversed by the wingtip). Pseudo-volumetric, ensemble-averaged, flow fields around the wings were captured using particle image velocimetry at 11 instances throughout simulated downstrokes. Results confirmed the presence of a high-lift, separated flow field with a leading-edge vortex (LEV), and revealed that the conical, primary LEV grows in size and strength with increasing AR. In each case, the LEV had an arch-shaped axis with its outboard end originating from a focus-sink singularity on the wing surface near the tip. LEV detachment was observed for AR > 1.5 around mid-stroke at similar to 70% span, and initiated sooner over higher aspect ratio wings. At AR > 3 the larger, stronger vortex persisted under the wing surface well into the next half-stroke leading to a reduction in lift. Circulatory lift attributable to the LEV increased with AR up to AR= 6. Higher aspect ratios generated proportionally less lift distally because of LEV breakdown, and also less lift closer to the wing root due to the previous LEV's continuing presence under the wing. In nature, insect wings go no higher than AR similar to 5, likely in part due to architectural and physiological constraints but also because of the reducing aerodynamic benefits of high AR wings.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] Adaptive attitude and position control of an insect-like flapping wing air vehicle
    Banazadeh, Afshin
    Taymourtash, Neda
    NONLINEAR DYNAMICS, 2016, 85 (01) : 47 - 66
  • [32] FLUID-STRUCTURE INTERACTION DESIGN OF INSECT-LIKE MICRO FLAPPING WING
    Ishihara, D.
    Ohira, N.
    Takagi, M.
    Murakami, S.
    Horie, T.
    COUPLED PROBLEMS IN SCIENCE AND ENGINEERING VII (COUPLED PROBLEMS 2017), 2017, : 870 - 875
  • [33] Aerodynamic forces and flow structures of the leading edge vortex on a flapping wing considering ground effect
    Tien Van Truong
    Byun, Doyoung
    Kim, Min Jun
    Yoon, Kwang Joon
    Park, Hoon Cheol
    BIOINSPIRATION & BIOMIMETICS, 2013, 8 (03)
  • [34] Pitch, roll, and yaw moment generator for insect-like tailless flapping-wing MAV
    Hoang Vu Phan
    Park, Hoon Cheol
    BIOINSPIRATION, BIOMIMETICS, AND BIOREPLICATION 2016, 2016, 9797
  • [35] Insect-like flapping wing mechanism based on a double spherical Scotch yoke
    Galinski, C
    Zbikowski, R
    JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2005, 2 (03) : 223 - 235
  • [36] Scaling analysis of the circulation growth of leading-edge vortex in flapping flight
    Yang Xiang
    Haotian Hang
    Suyang Qin
    Hong Liu
    Acta Mechanica Sinica, 2021, 37 : 1530 - 1543
  • [37] Control Strategy for Insect-Like Flapping Wing Micro Air Vehicles: Attitude Control
    Hu, Minglang
    Wei, Ruixuan
    Dai, Tongwei
    Zou, Lingyun
    Li, Tingting
    2008 7TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION, VOLS 1-23, 2008, : 9043 - +
  • [38] A review of bird-like flapping wing with high aspect ratio
    Xie, Changchuan
    Gao, Nongyue
    Meng, Yang
    Wu, Yue
    Yang, Chao
    CHINESE JOURNAL OF AERONAUTICS, 2023, 36 (01) : 22 - 44
  • [39] Hydrofoil geometry and leading-edge modifications: Influence of section profile, aspect ratio, and sweep
    Kant, Rajni
    Bhattacharyya, Anirban
    OCEAN ENGINEERING, 2022, 262
  • [40] Leading-edge vortex formation and transient lift generation on a revolving wing at low Reynolds number
    Chen, Long
    Wu, Jianghao
    Cheng, Bo
    AEROSPACE SCIENCE AND TECHNOLOGY, 2020, 97