Boundary Value Problem with Normal Derivatives for a Higher-Order Elliptic Equation on the Plane

被引:18
作者
Koshanov, B. D. [1 ]
Soldatov, A. P.
机构
[1] Inst Math & Math Modeling, Alma Ata, Kazakhstan
关键词
D O I
10.1134/S0012266116120077
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For an elliptic operator of order 2l with constant (and only leading) real coefficients, we consider a boundary value problem in which the normal derivatives of order (k(j) - 1), j = 1,..., l, where 1 <= k(1) < ... < k(l), are specified. It becomes the Dirichlet problem for k(j) = j and the Neumann problem for k(j) = j + 1. We obtain a sufficient condition for the Fredholm property of which problem and derive an index formula.
引用
收藏
页码:1594 / 1609
页数:16
相关论文
共 9 条
[1]  
Bitsadze A.V., 1988, DIFF URAVN, V24, P825
[2]  
Dezin A.A., 1954, DOKL AKAD NAUK+, V96, P901
[3]  
Mal'tsev A.I., 1970, OSNOVY LINEINOI ALGE
[4]  
Malakhova N.A., 2008, DIFF URAVN, V44, P1077
[5]  
Muskhelishvili N.I., 1968, SINGULYARNYE INTEGRA
[6]  
Palais R.S., 1965, SEM AT SIN IND THEOR
[7]  
Soldatov A.P., 2004, J MATH SCI, V17, P1
[8]  
Soldatov A.P., 1989, DIFF URAVN, V25, P136
[9]  
Vashchenko O.V., 2006, NAUCH VEDOM BELG IAM, V6, P3