The smallest singular value of a shifted d-regular random square matrix

被引:11
作者
Litvak, Alexander E. [1 ]
Lytova, Anna [2 ]
Tikhomirov, Konstantin [3 ]
Tomczak-Jaegermann, Nicole [1 ]
Youssef, Pierre [4 ]
机构
[1] Univ Alberta, Dept Math & Stat Sci, Edmonton, AB T6G 2G1, Canada
[2] Univ Opole, Fac Math Phys & Comp Sci, 48,Oleska Str, PL-45052 Opole, Poland
[3] Princeton Univ, Dept Math, Fine Hall,Washington Rd, Princeton, NJ 08544 USA
[4] Univ Paris Diderot, Lab Probabilites Stat & Modelisat, F-75013 Paris, France
关键词
Adjacency matrices; Anti-concentration; Condition number; Invertibility; Littlewood-Offord theory; Random graphs; Random matrices; Regular graphs; Singular probability; Singularity; Sparse matrices; Smallest singular value;
D O I
10.1007/s00440-018-0852-y
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We derive a lower bound on the smallest singular value of a random d-regular matrix, that is, the adjacency matrix of a random d-regular directed graph. Specifically, let C1<d<cn/log2n and let Mn,d be the set of all nxn square matrices with 0/1 entries, such that each row and each column of every matrix in Mn,d has exactly d ones. Let M be a random matrix uniformly distributed on Mn,d. Then the smallest singular value sn(M) of M is greater than n-6 with probability at least 1-C2log2d/ where c, C1, and C2 are absolute positive constants independent of any other parameters. Analogous estimates are obtained for matrices of the form M-zId, where Id is the identity matrix and z is a fixed complex number.
引用
收藏
页码:1301 / 1347
页数:47
相关论文
共 52 条
  • [1] CONDITION NUMBER OF A SQUARE MATRIX WITH IID COLUMNS DRAWN FROM A CONVEX BODY
    Adamczak, Radoslaw
    Guedon, Olivier
    Litvak, Alexander E.
    Pajor, Alain
    Tomczak-Jaegermann, Nicole
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 140 (03) : 987 - 998
  • [2] Adamczak R, 2010, J AM MATH SOC, V23, P535
  • [3] Bai Z, 2010, SPRINGER SER STAT, P1, DOI 10.1007/978-1-4419-0661-8
  • [4] Circular law for the sum of random permutation matrices
    Basak, Anirban
    Cook, Nicholas
    Zeitouni, Ofer
    [J]. ELECTRONIC JOURNAL OF PROBABILITY, 2018, 23
  • [5] Invertibility of sparse non-Hermitian matrices
    Basak, Anirban
    Rudelson, Mark
    [J]. ADVANCES IN MATHEMATICS, 2017, 310 : 426 - 483
  • [6] Bau D., 1997, NUMERICAL LINEAR ALG
  • [7] Around the circular law
    Bordenave, Charles
    Chafai, Djalil
    [J]. PROBABILITY SURVEYS, 2012, 9 : 1 - 89
  • [8] Brazitikos S, 2014, MATH SURVEYS MONOGRA
  • [9] Cook N., ARXIV170305839
  • [10] On the singularity of adjacency matrices for random regular digraphs
    Cook, Nicholas A.
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 2017, 167 (1-2) : 143 - 200