Shifted quasi-symmetric functions and the Hopf algebra of peak functions

被引:14
作者
Bergeron, N [1 ]
Mykytiuk, S
Sottile, F
van Willigenburg, S
机构
[1] York Univ, Dept Math & Stat, N York, ON M3J 1P3, Canada
[2] Univ Wisconsin, Dept Math, Madison, WI 53706 USA
基金
美国国家科学基金会; 加拿大自然科学与工程研究理事会;
关键词
pieri; graded operation; poset; quasi-symmetric functions;
D O I
10.1016/S0012-365X(01)00251-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In his work on P-partitions, Stembridge defined the algebra of peak functions Pi, which is both a subalgebra and a retraction of the algebra of quasi-symmetric functions. We show that Pi is closed under coproduct, and therefore a Hopf algebra, and describe the kernel of the retraction. Billey and Haiman, in their work on Schubert polynomials, also defined a new class of quasi-symmetric functions-shifted quasi-symmetric functions-and we show that Pi is strictly contained in the linear span Xi of shifted quasi-symmetric functions. We show that Xi is a coalgebra, and compute the rank of the nth graded component.
引用
收藏
页码:57 / 66
页数:10
相关论文
共 10 条
[1]   SCHUBERT POLYNOMIALS FOR THE CLASSICAL-GROUPS [J].
BILLEY, S ;
HAIMAN, M .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 8 (02) :443-482
[2]  
Gessel I., 1984, Contemporary Mathematics, V34, P289
[3]  
HIVERT F, 1998, P 10 FPSAC TOR, P377
[4]   SCHUR Q-FUNCTIONS AND COHOMOLOGY OF ISOTROPIC GRASSMANNIANS [J].
JOZEFIAK, T .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1991, 109 :471-478
[5]   DUALITY BETWEEN QUASI-SYMMETRICAL FUNCTIONS AND THE SOLOMON DESCENT ALGEBRA [J].
MALVENUTO, C ;
REUTENAUER, C .
JOURNAL OF ALGEBRA, 1995, 177 (03) :967-982
[6]  
PRAGACZ P, 1991, TOPICS INVARIANT THE, P130
[7]  
Schur I., 1911, J REINE ANGEN MATH, V139, P155, DOI [DOI 10.1515/CRLL.1911.139.155, 10.1515/crll.1911.139.155]
[8]  
SERGEEV A, 1985, MATH USSR SB, V51, P419
[9]  
SLOANE NJA, 1994, ELECT J COMBINATORIC, V1, pF1
[10]   Enriched P-partitions [J].
Stembridge, JR .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 349 (02) :763-788