Asymptotics of eigenvalues of the Schrodinger operator with a strong δ-interaction on a loop

被引:48
作者
Exner, P
Yoshitomi, K [1 ]
机构
[1] Kyushu Univ, Grad Sch Math, Fukuoka 8128581, Japan
[2] Acad Sci Czech Republ, Inst Nucl Phys, CZ-25068 Rez, Czech Republic
[3] Czech Tech Univ, Doppler Inst, Prague 11519, Czech Republic
关键词
eigenvalues of the Schrodinger operators; delta-interaction;
D O I
10.1016/S0393-0440(01)00071-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we investigate the operator H-beta = -Delta - betadelta((.) - Gamma) in L-2(R-2), where beta > 0 and Gamma is a closed C-4 Jordan curve in R-2. We obtain the asymptotic form of each eigenvalue of H-beta as beta tends to infinity. We also get the asymptotic form of the number of negative eigenvalues of H in the strong coupling asymptotic regime. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:344 / 358
页数:15
相关论文
共 11 条
  • [1] Albeverio S., 1988, Solvable Models in Quantum Mechanics
  • [2] [Anonymous], METHODS MODERN MATH
  • [3] [Anonymous], IDEAS METHODS QUANTU
  • [4] [Anonymous], 1999, LONDON MATH SOC LECT
  • [5] SCHRODINGER-OPERATORS WITH SINGULAR INTERACTIONS[J]. BRASCHE, JF;EXNER, P;KUPERIN, YA;SEBA, P. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1994(01)
  • [6] FINITELY MANY SPHERE INTERACTIONS IN QUANTUM-MECHANICS - NONSEPARATED BOUNDARY-CONDITIONS[J]. DABROWSKI, L;SHABANI, J. JOURNAL OF MATHEMATICAL PHYSICS, 1988(10)
  • [7] Geometrically induced spectrum in curved leaky wires[J]. Exner, P;Ichinose, T. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001(07)
  • [8] Kato T., 1966, Perturbation Theory for Linear Operators., DOI [10.1007/978-3-662-12678-3, DOI 10.1007/978-3-662-12678-3]
  • [9] KURYLEV YV, 1978, ZAP NAUCHN SEM LENIN, V78, P112
  • [10] On the semi-boundedness of delta-perturbations of the Laplacian supported by curves with angle points[J]. Shondin, YG. THEORETICAL AND MATHEMATICAL PHYSICS, 1995(01)