Double variable neighbourhood search with smoothing for the molecular distance geometry problem

被引:20
作者
Liberti, Leo [1 ]
Lavor, Carlile [2 ]
Maculan, Nelson [3 ]
Marinelli, Fabrizio [1 ]
机构
[1] LIX, Ecole Polytech, F-91128 Palaiseau, France
[2] Univ Estadual Campinas, UNICAMP, Dept Appl Math, IMECC, BR-13081970 Campinas, SP, Brazil
[3] Univ Fed Rio de Janeiro, COPPE Syst Engn, BR-21941972 Rio De Janeiro, Brazil
基金
巴西圣保罗研究基金会;
关键词
Molecular conformation; Distance geometry; Global optimization; Global continuation; Variable neighbourhood search; Smoothing;
D O I
10.1007/s10898-007-9218-1
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We discuss the geometrical interpretation of a well-known smoothing operator applied to the Molecular Distance Geometry Problem (MDGP), and we then describe a heuristic approach based on Variable Neighbourhood Search on the smoothed and original problem. This algorithm often manages to find solutions having higher accuracy than other methods. This is important as small differences in the objective function value may point to completely different 3D molecular structures.
引用
收藏
页码:207 / 218
页数:12
相关论文
共 21 条
  • [1] Crippen G.M., 1988, Distance Geometry and Molecular Conformation, Volume15 of Chemometrics Series
  • [2] Cruz IF, 1996, LECT NOTES COMPUT SC, V1027, P162, DOI 10.1007/BFb0021800
  • [3] A linear-time algorithm for solving the molecular distance geometry problem with exact inter-atomic distances
    Dong, QF
    Wu, ZJ
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2002, 22 (1-4) : 365 - 375
  • [4] DRAZIC M, EUR J OPER IN PRESS
  • [5] Eren T, 2004, IEEE INFOCOM SER, P2673
  • [6] GILL PE, 1999, USERS GUIDE SNOPT 5
  • [7] Klepeis JL, 1999, J COMPUT CHEM, V20, P1354, DOI 10.1002/(SICI)1096-987X(199910)20:13<1354::AID-JCC3>3.0.CO
  • [8] 2-N
  • [9] LAVOR C, 1913, GLOBAL OPTIMIZATION, P405
  • [10] LAVOR C, 2002, ENCY OPTIMIZATION