Multiple solutions to nonlinear Schrodinger equations with critical growth

被引:1
作者
Liu, Wulong [1 ]
Zhao, Peihao [2 ]
机构
[1] Jiangxi Univ Sci & Technol, Dept Math, Ganzhou 341000, Peoples R China
[2] Lanzhou Univ, Sch Math & Stat, Lanzhou 730000, Peoples R China
来源
BOUNDARY VALUE PROBLEMS | 2013年
基金
中国国家自然科学基金;
关键词
nonlinear Schrodinger equations; critical growth; variational methods; POSITIVE BOUND-STATES; ELLIPTIC PROBLEMS; EXISTENCE;
D O I
10.1186/1687-2770-2013-199
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In 2000, Cingolani and Lazzo (J. Differ. Equ. 160:118-138, 2000) studied nonlinear Schrodinger equations with competing potential functions and considered only the subcritical growth. They related the number of solutions with the topology of the global minima set of a suitable ground energy function. In the present paper, we establish these results in the critical case. In particular, we remove the condition , which is a key condition in their paper. In the proofs we apply variational methods and Ljusternik-Schnirelmann theory.
引用
收藏
页数:20
相关论文
共 27 条
[1]   Multiple Solutions for a Nonlinear Schrodinger Equation with Magnetic Fields [J].
Alves, Claudianor O. ;
Figueiredo, Giovany M. ;
Furtado, Marcelo F. .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2011, 36 (09) :1565-1586
[2]   Semiclassical states of nonlinear Schrodinger equations [J].
Ambrosetti, A ;
Badiale, M ;
Cingolani, S .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1997, 140 (03) :285-300
[3]  
Ambrosetti A., 2007, NONLINEAR ANAL SEMIL
[4]  
[Anonymous], RIV MAT IBEROAMERICA
[5]  
BERESTYCKI H, 1983, ARCH RATION MECH AN, V82, P313
[6]   A RELATION BETWEEN POINTWISE CONVERGENCE OF FUNCTIONS AND CONVERGENCE OF FUNCTIONALS [J].
BREZIS, H ;
LIEB, E .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 88 (03) :486-490
[7]   Multiple positive solutions to nonlinear Schrodinger equations with competing potential functions [J].
Cingolani, S ;
Lazzo, M .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2000, 160 (01) :118-138
[8]  
del Pino M, 1999, INDIANA U MATH J, V48, P883
[9]   Multi-peak bound states for nonlinear Schrodinger equations [J].
Del Pino, M ;
Felmer, PL .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1998, 15 (02) :127-149
[10]   Local mountain passes for semilinear elliptic problems in unbounded domains [J].
delPino, M ;
Felmer, PL .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 1996, 4 (02) :121-137