Linear dimensionality reduction via a heteroscedastic extension of LDA: The Chernoff criterion

被引:0
|
作者
Loog, M
Duin, RPW
机构
[1] Univ Med Ctr Utrecht, Image Sci Inst, NL-3508 GA Utrecht, Netherlands
[2] Delft Univ Technol, Fac Elect Engn Math & Comp Sci, Informat & Commun Theory Grp, NL-2600 GA Delft, Netherlands
关键词
linear dimension reduction; linear discriminant analysis; Fisher criterion; Chernoff distance; Chernoff criterion;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose an eigenvector-based heteroscedastic linear dimension reduction (LDR) technique for multiclass data. The technique is based on a heteroscedastic two-class technique which utilizes the so-called Chernoff criterion, and successfully extends the well-known linear discriminant analysis (LDA). The latter, which is based on the Fisher criterion, is incapable of dealing with heteroscedastic data in a proper way. For the two-class case, the between-class scatter is generalized so to capture differences in (co)variances. It is shown that the classical notion of between-class scatter can be associated with Euclidean distances between class means. From this viewpoint, the between-class scatter is generalized by employing the Chernoff distance measure, leading to our proposed heteroscedastic measure. Finally, using the results from the two-class case, a multiclass extension of the Chernoff criterion is proposed. This criterion combines separation information present in the class mean as well as the class covariance matrices. Extensive experiments and a comparison with similar dimension reduction techniques are presented.
引用
收藏
页码:732 / 739
页数:8
相关论文
共 28 条
  • [1] Analysis of Chernoff Criterion for Linear Dimensionality Reduction
    Peng, Jing
    Robila, Stefan
    Fan, Wei
    Seetharaman, Guna
    IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS (SMC 2010), 2010,
  • [2] Uncorrelated heteroscedastic LDA based on the weighted pairwise Chernoff criterion
    Qin, AK
    Suganthan, PN
    Loog, M
    PATTERN RECOGNITION, 2005, 38 (04) : 613 - 616
  • [3] Linear dimensionality reduction using relevance weighted LDA
    Tang, EK
    Suganthan, PN
    Yao, X
    Qin, AK
    PATTERN RECOGNITION, 2005, 38 (04) : 485 - 493
  • [4] Chernoff-Based Multi-class Pairwise Linear Dimensionality Reduction
    Rueda, Luis
    Henriquez, Claudio
    Oommen, B. John
    PROGRESS IN PATTERN RECOGNITION, IMAGE ANALYSIS AND APPLICATIONS, PROCEEDINGS, 2008, 5197 : 301 - +
  • [5] A HETEROSCEDASTIC EXTENSION OF LDA BASED ON MULTI-CLASS MATUSITA AFFINITY
    Mahanta, Mohammad Shahin
    Plataniotis, Konstantinos N.
    2012 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2012, : 1921 - 1924
  • [6] Heteroscedastic Max-Min Distance Analysis for Dimensionality Reduction
    Su, Bing
    Ding, Xiaoqing
    Liu, Changsong
    Wu, Ying
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2018, 27 (08) : 4052 - 4065
  • [7] Exploiting Fisher and Fukunaga-Koontz Transforms in Chernoff Dimensionality Reduction
    Peng, Jing
    Seetharaman, Guna
    Fan, Wei
    Varde, Aparna
    ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2013, 7 (02)
  • [8] Representative null space LDA for discriminative dimensionality reduction
    He, Zaixing
    Wu, Mengtian
    Zhao, Xinyue
    Zhang, Shuyou
    Tan, Jianrong
    PATTERN RECOGNITION, 2021, 111
  • [9] A New Approach to Dimensionality Reduction Based on Locality Preserving LDA
    Zhang, Di
    He, Jiazhong
    2013 10TH INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY (FSKD), 2013, : 531 - 535
  • [10] Weighted LDA Based Dimensionality Reduction for Ultrasonic Flaw Signal Classification
    Yang, Peng
    Tian, Yangyang
    ADVANCES IN MECHATRONICS AND CONTROL ENGINEERING II, PTS 1-3, 2013, 433-435 : 1841 - +