Efficient posterior exploration of a high- dimensional groundwater model from two- stage Markov chain Monte Carlo simulation and polynomial chaos expansion

被引:219
作者
Laloy, Eric [1 ]
Rogiers, Bart [1 ,2 ]
Vrugt, Jasper A. [3 ,4 ]
Mallants, Dirk [5 ]
Jacques, Diederik [1 ]
机构
[1] Inst Environm Hlth & Safety, Belgian Nucl Res Ctr, B-2400 Mol, Belgium
[2] Katholieke Univ Leuven, Dept Earth & Environm Sci, Heverlee, Belgium
[3] Univ Calif Irvine, Dept Civil & Environm Engn, Irvine, CA USA
[4] Univ Amsterdam, Inst Biodivers & Ecosyst Dynam, Amsterdam, Netherlands
[5] CSIRO Land & Water, Urrbrae, SA, Australia
关键词
groundwater model; two-stage MCMC; polynomial chaos; high-parameter dimensionality; PARTIAL-DIFFERENTIAL-EQUATIONS; STOCHASTIC COLLOCATION METHOD; DYNAMIC DATA INTEGRATION; STEADY-STATE CONDITIONS; SENSITIVITY-ANALYSIS; AQUIFER PARAMETERS; UNCERTAINTY; EVOLUTION; ALGORITHM; TRANSIENT;
D O I
10.1002/wrcr.20226
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This study reports on two strategies for accelerating posterior inference of a highly parameterized and CPU-demanding groundwater flow model. Our method builds on previous stochastic collocation approaches, e.g., Marzouk and Xiu (2009) and Marzouk and Najm (2009), and uses generalized polynomial chaos (gPC) theory and dimensionality reduction to emulate the output of a large-scale groundwater flow model. The resulting surrogate model is CPU efficient and serves to explore the posterior distribution at a much lower computational cost using two-stage MCMC simulation. The case study reported in this paper demonstrates a two to five times speed-up in sampling efficiency.
引用
收藏
页码:2664 / 2682
页数:19
相关论文
共 83 条
[41]   Heterogeneity in sedimentary deposits: A review of structure-imitating, process-imitating, and descriptive approaches [J].
Koltermann, CE ;
Gorelick, SM .
WATER RESOURCES RESEARCH, 1996, 32 (09) :2617-2658
[42]   High-dimensional posterior exploration of hydrologic models using multiple-try DREAM(ZS) and high-performance computing [J].
Laloy, Eric ;
Vrugt, Jasper A. .
WATER RESOURCES RESEARCH, 2012, 48
[43]  
LeMaitre OP, 2010, SCI COMPUT, P1, DOI 10.1007/978-90-481-3520-2
[44]   Probabilistic collocation method for flow in porous media: Comparisons with other stochastic methods [J].
Li, Heng ;
Zhang, Dongxiao .
WATER RESOURCES RESEARCH, 2007, 43 (09)
[45]   Efficient geostatistical inverse methods for structured and unstructured grids [J].
Li, Wei ;
Cirpka, Olaf A. .
WATER RESOURCES RESEARCH, 2006, 42 (06)
[46]   Stochastic analysis of unsaturated flow with probabilistic collocation method [J].
Li, Weixuan ;
Lu, Zhiming ;
Zhang, Dongxiao .
WATER RESOURCES RESEARCH, 2009, 45
[47]  
Liu J.S., 2001, Monte Carlo Strategies in Scientific Computing
[48]  
LOEVE M, 1963, PROBABILITY THEORY
[49]  
Mariethoz G, 2010, WATER RESOUR RES, V46, DOI [10.1029/2010WR009274, 10.1029/2008WR007621]
[50]   A Stochastic Collocation Approach to Bayesian Inference in Inverse Problems [J].
Marzouk, Youssef ;
Xiu, Dongbin .
COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2009, 6 (04) :826-847