Efficient posterior exploration of a high- dimensional groundwater model from two- stage Markov chain Monte Carlo simulation and polynomial chaos expansion

被引:219
作者
Laloy, Eric [1 ]
Rogiers, Bart [1 ,2 ]
Vrugt, Jasper A. [3 ,4 ]
Mallants, Dirk [5 ]
Jacques, Diederik [1 ]
机构
[1] Inst Environm Hlth & Safety, Belgian Nucl Res Ctr, B-2400 Mol, Belgium
[2] Katholieke Univ Leuven, Dept Earth & Environm Sci, Heverlee, Belgium
[3] Univ Calif Irvine, Dept Civil & Environm Engn, Irvine, CA USA
[4] Univ Amsterdam, Inst Biodivers & Ecosyst Dynam, Amsterdam, Netherlands
[5] CSIRO Land & Water, Urrbrae, SA, Australia
关键词
groundwater model; two-stage MCMC; polynomial chaos; high-parameter dimensionality; PARTIAL-DIFFERENTIAL-EQUATIONS; STOCHASTIC COLLOCATION METHOD; DYNAMIC DATA INTEGRATION; STEADY-STATE CONDITIONS; SENSITIVITY-ANALYSIS; AQUIFER PARAMETERS; UNCERTAINTY; EVOLUTION; ALGORITHM; TRANSIENT;
D O I
10.1002/wrcr.20226
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This study reports on two strategies for accelerating posterior inference of a highly parameterized and CPU-demanding groundwater flow model. Our method builds on previous stochastic collocation approaches, e.g., Marzouk and Xiu (2009) and Marzouk and Najm (2009), and uses generalized polynomial chaos (gPC) theory and dimensionality reduction to emulate the output of a large-scale groundwater flow model. The resulting surrogate model is CPU efficient and serves to explore the posterior distribution at a much lower computational cost using two-stage MCMC simulation. The case study reported in this paper demonstrates a two to five times speed-up in sampling efficiency.
引用
收藏
页码:2664 / 2682
页数:19
相关论文
共 83 条
[1]  
[Anonymous], 1992, Stat. Sci., DOI DOI 10.1214/SS/1177011143
[2]  
[Anonymous], HDB MARKOV CHAIN MON
[3]  
[Anonymous], 1963, Dokl. Akad. Nauk SSSR
[4]   A stochastic collocation method for elliptic partial differential equations with random input data [J].
Babuska, Ivo ;
Nobile, Fabio ;
Tempone, Raul .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2007, 45 (03) :1005-1034
[5]  
Beerten K., 2010, PROJECT NEAR SURFACE
[6]   AN ANALYSIS OF TRANSFORMATIONS [J].
BOX, GEP ;
COX, DR .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1964, 26 (02) :211-252
[7]   Inverse problem in hydrogeology [J].
Carrera, J ;
Alcolea, A ;
Medina, A ;
Hidalgo, J ;
Slooten, LJ .
HYDROGEOLOGY JOURNAL, 2005, 13 (01) :206-222
[8]   ESTIMATION OF AQUIFER PARAMETERS UNDER TRANSIENT AND STEADY-STATE CONDITIONS .2. UNIQUENESS, STABILITY, AND SOLUTION ALGORITHMS [J].
CARRERA, J ;
NEUMAN, SP .
WATER RESOURCES RESEARCH, 1986, 22 (02) :211-227
[9]   ESTIMATION OF AQUIFER PARAMETERS UNDER TRANSIENT AND STEADY-STATE CONDITIONS .1. MAXIMUM-LIKELIHOOD METHOD INCORPORATING PRIOR INFORMATION [J].
CARRERA, J ;
NEUMAN, SP .
WATER RESOURCES RESEARCH, 1986, 22 (02) :199-210
[10]   Markov chain Monte Carlo using an approximation [J].
Christen, JA ;
Fox, C .
JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2005, 14 (04) :795-810