Devising Mineral Resource Supply Pathways to a Low-Carbon Electricity Generation by 2100

被引:25
作者
Boubault, Antoine [1 ,2 ]
Maizi, Nadia [1 ]
机构
[1] PSL Res Univ, Ctr Appl Math, Mines ParisTech, Rue Claude Daunesse,CS 10207, F-06904 Sophia Antipolis, France
[2] Bur Rech Geol & Minieres, ave Claude Guillemin, F-45060 Orleans, France
来源
RESOURCES-BASEL | 2019年 / 8卷 / 01期
关键词
industrial ecology; integrated assessment models; life-cycle inventories; mineral resources; decoupling; prospective scenario analysis; TIAM-FR; socioeconomic metabolism; INTEGRATED ASSESSMENT MODEL; LIFE-CYCLE ASSESSMENT; METAL REQUIREMENTS; ETSAP-TIAM; ENERGY; SCENARIOS; BIOENERGY; CONSTRAINTS; CRITICALITY; EMISSIONS;
D O I
10.3390/resources8010033
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Achieving a "carbon neutral" world by 2100 or earlier in a context of economic growth implies a drastic and profound transformation of the way energy is supplied and consumed in our societies. In this paper, we use life-cycle inventories of electricity-generating technologies and an integrated assessment model (TIMES Integrated Assessment Model) to project the global raw material requirements in two scenarios: a second shared socioeconomic pathway baseline, and a 2 degrees C scenario by 2100. Material usage reported in the life-cycle inventories is distributed into three phases, namely construction, operation, and decommissioning. Material supply dynamics and the impact of the 2 degrees C warming limit are quantified for three raw fossil fuels and forty-eight metallic and nonmetallic mineral resources. Depending on the time horizon, graphite, sand, sulfur, borates, aluminum, chromium, nickel, silver, gold, rare earth elements or their substitutes could face a sharp increase in usage as a result of a massive installation of low-carbon technologies. Ignoring nonfuel resource availability and value in deep decarbonation, circular economy, or decoupling scenarios can potentially generate misleading, contradictory, or unachievable climate policies.
引用
收藏
页数:13
相关论文
共 47 条
[1]  
Angerer G., 2009, ISI SCHRIFTENREIHE I
[2]   Closing the TIMES Integrated Assessment Model (TIAM-FR) Raw Materials Gap with Life Cycle Inventories [J].
Boubault, Antoine ;
Kang, Seungwoo ;
Maizi, Nadia .
JOURNAL OF INDUSTRIAL ECOLOGY, 2019, 23 (03) :587-600
[3]  
Christmann P, 2018, NAT RESOUR RES, V27, P159, DOI 10.1007/s11053-017-9343-6
[4]   Metal supply constraints for a low-carbon economy? [J].
de Koning, Arjan ;
Kleijn, Rene ;
Huppes, Gjalt ;
Sprecher, Benjamin ;
van Engelen, Guus ;
Tukker, Arnold .
RESOURCES CONSERVATION AND RECYCLING, 2018, 129 :202-208
[5]   Scenarios for Demand Growth of Metals in Electricity Generation Technologies, Cars, and Electronic Appliances [J].
Deetman, Sebastiaan ;
Pauliuk, Stefan ;
van Vuuren, Detlef P. ;
van der Voet, Ester ;
Tukker, Arnold .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2018, 52 (08) :4950-4959
[6]   Water modeling in an energy optimization framework - The water-scarce middle east context [J].
Dubreuil, Aurelie ;
Assoumou, Edi ;
Bouckaert, Stephanie ;
Selosse, Sandrine ;
Maizi, Nadia .
APPLIED ENERGY, 2013, 101 :268-279
[7]   Resource Demand Scenarios for the Major Metals [J].
Elshkaki, Ayman ;
Graedel, T. E. ;
Ciacci, Luca ;
Reck, Barbara K. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2018, 52 (05) :2491-2497
[8]   Dynamic analysis of the global metals flows and stocks in electricity generation technologies [J].
Elshkaki, Ayman ;
Graedel, T. E. .
JOURNAL OF CLEANER PRODUCTION, 2013, 59 :260-273
[9]  
England JL, 2015, NAT NANOTECHNOL, V10, P919, DOI [10.1038/nnano.2015.250, 10.1038/NNANO.2015.250]
[10]  
Espinoza L.A.T., 2012, 27 POLINARES EUR COM