Position statement on priorities for artificial intelligence in GI endoscopy: a report by the ASGE Task Force

被引:53
作者
Berzin, Tyler M. [1 ,2 ]
Parasa, Sravanthi [3 ]
Wallace, Michael B. [4 ]
Gross, Seth A. [5 ]
Repici, Alessandro [6 ,7 ]
Sharma, Prateek [8 ,9 ]
机构
[1] Beth Israel Deaconess Med Ctr, Ctr Adv Endoscopy, 330 Brookline Ave, Boston, MA 02130 USA
[2] Harvard Med Sch, 330 Brookline Ave, Boston, MA 02130 USA
[3] Swedish Med Grp, Div Gastroenterol, Seattle, WA USA
[4] Mayo Clin Florida, Dept Gastroenterol, Jacksonville, FL USA
[5] New York Univ Langone Hlth, Div Gastroenterol & Hepatol, New York, NY USA
[6] Humanitas Univ, Humanitas Res Hosp, Digest Endoscopy Unit, Milan, Italy
[7] Humanitas Univ, Dept Biomed Sci, Milan, Italy
[8] Vet Affairs Med Ctr, Gastroenterol & Hepatol, Kansas City, MO USA
[9] Univ Kansas, Med Ctr, Kansas City, MO USA
关键词
COLONOSCOPY; QUALITY; SYSTEM;
D O I
10.1016/j.gie.2020.06.035
中图分类号
R57 [消化系及腹部疾病];
学科分类号
摘要
Artificial intelligence (AI) in GI endoscopy holds tremendous promise to augment clinical performance, establish better treatment plans, and improve patient outcomes. Although there are promising initial applications and preliminary clinical data for AI in gastroenterology, the field is still in a very early phase, with limited clinical use. The American Society for Gastrointestinal Endoscopy has convened an AI Task Force to develop guidance around clinical implementation, testing/validating algorithms, and building pathways for successful implementation of AI in GI endoscopy. This White Paper focuses on 3 areas: (1) priority use cases for development of AI algorithms in GI, both for specific clinical scenarios and for streamlining clinical workflows, quality reporting, and practice management; (2) data science priorities, including development of image libraries, and standardization of methods for storing, sharing, and annotating endoscopic images/video; and (3) research priorities, focusing on the importance of high-quality, prospective trials measuring clinically meaningful patient outcomes.
引用
收藏
页码:951 / 959
页数:9
相关论文
共 42 条
[1]   Programming Tools for Messenger-Based Chatbot System Organization: Implication for Outpatient and Translational Medicines [J].
Abashev A. ;
Grigoryev R. ;
Grigorian K. ;
Boyko V. .
BioNanoScience, 2017, 7 (02) :403-407
[2]   The Role of the ACR Data Science Institute in Advancing Health Equity in Radiology [J].
Allen, Bibb ;
Dreye, Keith .
JOURNAL OF THE AMERICAN COLLEGE OF RADIOLOGY, 2019, 16 (04) :644-648
[3]   GTCreator: a flexible annotation tool for image-based datasets [J].
Bernal, Jorge ;
Histace, Aymeric ;
Masana, Marc ;
Angermann, Quentin ;
Sanchez-Montes, Cristina ;
Rodriguez de Miguel, Cristina ;
Hammami, Maroua ;
Garcia-Rodriguez, Ana ;
Cordova, Henry ;
Romain, Olivier ;
Fernandez-Esparrach, Gloria ;
Dray, Xavier ;
Javier Sanchez, F. .
INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2019, 14 (02) :191-201
[4]   Real-time differentiation of adenomatous and hyperplastic diminutive colorectal polyps during analysis of unaltered videos of standard colonoscopy using a deep learning model [J].
Byrne, Michael F. ;
Chapados, Nicolas ;
Soudan, Florian ;
Oertel, Clemens ;
Linares Perez, Milagros ;
Kelly, Raymond ;
Iqbal, Nadeem ;
Chandelier, Florent ;
Rex, Douglas K. .
GUT, 2019, 68 (01) :94-100
[5]   Comparing blind spots of unsedated ultrafine, sedated, and unsedated conventional gastroscopy with and without artificial intelligence: a prospective, single-blind, 3-parallel-group, randomized, single-center trial [J].
Chen, Di ;
Wu, Lianlian ;
Li, Yanxia ;
Zhang, Jun ;
Liu, Jun ;
Huang, Li ;
Jiang, Xiaoda ;
Huang, Xu ;
Mu, Ganggang ;
Hu, Shan ;
Hu, Xiao ;
Gong, Dexin ;
He, Xinqi ;
Yu, Honggang .
GASTROINTESTINAL ENDOSCOPY, 2020, 91 (02) :332-+
[6]   The digital scribe [J].
Coiera, Enrico ;
Kocaballi, Baki ;
Halamka, John ;
Laranjo, Liliana .
NPJ DIGITAL MEDICINE, 2018, 1
[7]   Deep Learning to Classify Intraductal Papillary Mucinous Neoplasms Using Magnetic Resonance Imaging [J].
Corral, Juan E. ;
Hussein, Sarfaraz ;
Kandel, Pujan ;
Bolan, Candice W. ;
Bagci, Ulas ;
Wallace, Michael B. .
PANCREAS, 2019, 48 (06) :805-810
[8]  
Dutta A., 2020, VGG Image Annotator
[9]  
Fadhil A, 2017, PROCEEDINGS OF THE 11TH EAI INTERNATIONAL CONFERENCE ON PERVASIVE COMPUTING TECHNOLOGIES FOR HEALTHCARE, PERVASIVEHEALTH 2017, P261, DOI 10.1145/3154862.3154914
[10]  
Faes L, 2020, TRANSL VIS SCI TECHN, V9, P1