Outcomes of Adversarial Attacks on Deep Learning Models for Ophthalmology Imaging Domains

被引:18
作者
Yoo, Tae Keun [1 ]
Choi, Joon Yul [2 ]
机构
[1] Republ Korea Air Force, Aerosp Med Ctr, Dept Ophthalmol, 635 Danjae Ro, Cheongju, South Korea
[2] Cleveland Clin, Neurol Inst, Epilepsy Ctr, Cleveland, OH 44106 USA
关键词
D O I
10.1001/jamaophthalmol.2020.3442
中图分类号
R77 [眼科学];
学科分类号
100212 ;
摘要
引用
收藏
页码:1213 / 1215
页数:3
相关论文
共 6 条
  • [1] Adversarial attacks on medical machine learning
    Finlayson, Samuel G.
    Bowers, John D.
    Ito, Joichi
    Zittrain, Jonathan L.
    Beam, Andrew L.
    Kohane, Isaac S.
    [J]. SCIENCE, 2019, 363 (6433) : 1287 - 1289
  • [2] Kermany Daniel, 2018, Mendeley Data, V3
  • [3] Accuracy of ultrawide-field fundus ophthalmoscopy-assisted deep learning for detecting treatment-naive proliferative diabetic retinopathy
    Nagasawa, Toshihiko
    Tabuchi, Hitoshi
    Masumoto, Hiroki
    Enno, Hiroki
    Niki, Masanori
    Ohara, Zaigen
    Yoshizumi, Yuki
    Ohsugi, Hideharu
    Mitamura, Yoshinori
    [J]. INTERNATIONAL OPHTHALMOLOGY, 2019, 39 (10) : 2153 - 2159
  • [4] Adversarial Attacks and Defenses in Deep Learning
    Ren, Kui
    Zheng, Tianhang
    Qin, Zhan
    Liu, Xue
    [J]. ENGINEERING, 2020, 6 (03) : 346 - 360
  • [5] Shlens J, 2015, ICML
  • [6] Reproduction study using public data of: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs
    Voets, Mike
    Mollersen, Kajsa
    Bongo, Lars Ailo
    [J]. PLOS ONE, 2019, 14 (06):