Fatigue crack detection performance comparison in a composite wind turbine rotor blade

被引:18
作者
Taylor, Stuart G. [1 ,2 ]
Park, Gyuhae [2 ,3 ]
Farinholt, Kevin M. [4 ]
Todd, Michael D. [1 ]
机构
[1] Univ Calif San Diego, Dept Struct Engn, La Jolla, CA 92093 USA
[2] Los Alamos Natl Lab, Los Alamos, NM USA
[3] Chonnam Natl Univ, Sch Mech Syst Engn, Kwangju, South Korea
[4] Commonwealth Ctr Adv Mfg, Disputanta, VA USA
来源
STRUCTURAL HEALTH MONITORING-AN INTERNATIONAL JOURNAL | 2013年 / 12卷 / 03期
关键词
Fatigue crack; detection performance; wind turbine; rotor blade; guided waves; diffuse wave field; composite structures;
D O I
10.1177/1475921712471414
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This article presents the detection performance results for multiple detectors or test statistics, using different active-sensing hardware systems in identifying the presence and location of a through-thickness fatigue crack in a 9-m composite wind turbine rotor blade. The rotor blade underwent similar to 8.5 million cycles of fatigue loading until failure, when a 30-cm-long crack surfaced on the leading edge portion of the blade's transitional root area. The rotor blade was cantilevered on a 7-ton test stand and excited using a hydraulically actuated resonant excitation system, which drove the rotor blade at its first natural frequency. Through the course of the test, data were collected using two distinct types of acquisition hardware: one designed for ultrasonic-guided wave interrogation and the other for diffuse wave field interrogation. This article presents the fatigue crack detection performance results for several hardware and test statistic combinations.
引用
收藏
页码:252 / 262
页数:11
相关论文
共 20 条
[1]  
[Anonymous], 2008, 20 WIND ENERGY 2030
[2]  
[Anonymous], 1998, FUNDEMENTALS STAT SI
[3]  
Berry D., 2007, SAND20070201 SAND NA
[4]   Efficient temperature compensation strategies for guided wave structural health monitoring [J].
Croxford, Anthony J. ;
Moll, Jochen ;
Wilcox, Paul D. ;
Michaels, Jennifer E. .
ULTRASONICS, 2010, 50 (4-5) :517-528
[5]  
Deines K., 2011, Rotating Machinery, Structural Health Monitoring, Shock and Vibration, V5, P413, DOI DOI 10.1007/978-1-4419-9428-8_36
[6]  
Farinholt K. M., 2012, SPIE SMART STRUCTURE
[7]   An introduction to structural health monitoring [J].
Farrar, Charles R. ;
Worden, Keith .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2007, 365 (1851) :303-315
[8]   Maximum-likelihood estimation of damage location in guided-wave structural health monitoring [J].
Flynn, Eric B. ;
Todd, Michael D. ;
Wilcox, Paul D. ;
Drinkwater, Bruce W. ;
Croxford, Anthony J. .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2011, 467 (2133) :2575-2596
[9]   A Bayesian approach to optimal sensor placement for structural health monitoring with application to active sensing [J].
Flynn, Eric B. ;
Todd, Michael D. .
MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2010, 24 (04) :891-903
[10]   Statistically-based damage detection in geometrically-complex structures using ultrasonic interrogation [J].
Haynes, Colin ;
Todd, Michael D. ;
Flynn, Eric ;
Croxford, Anthony .
STRUCTURAL HEALTH MONITORING-AN INTERNATIONAL JOURNAL, 2013, 12 (02) :141-152