RANDOM RIGHT EIGENVALUES OF GAUSSIAN QUATERNIONIC MATRICES

被引:16
作者
Benaych-Georges, Florent [1 ,2 ]
Chapon, Francois [3 ]
机构
[1] UPMC Univ Paris 6, LPMA, Case Courier 188,4,Pl Jussieu, F-75252 Paris 05, France
[2] Ecole Polytech, CMAP, F-91128 Palaiseau, France
[3] Telecom ParisTech, F-75013 Paris, France
关键词
Random matrices; quaternions;
D O I
10.1142/S2010326311500092
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider a random matrix whose entries are independent Gaussian variables taking values in the field of quaternions with variance 1/n. Using logarithmic potential theory, we prove the almost sure convergence, as the dimension n goes to infinity, of the empirical distribution of the right eigenvalues towards some measure supported on the unit ball of the quaternions field. Some comments on more general Gaussian quaternionic random matrix models are also made.
引用
收藏
页数:18
相关论文
共 13 条
[1]  
ANDERSON G, 2009, CAMBRIDGE STUDIES AD, V118
[2]  
[Anonymous], 1999, COURANT LECT NOTES M
[3]  
[Anonymous], 1997, Logarithmic Potentials with External Fields
[4]  
[Anonymous], 1998, ESAIM: Probability and Statistics
[5]  
BenArous G, 1997, PROBAB THEORY REL, V108, P517
[6]   A CONTINUOUS SEMIGROUP OF NOTIONS OF INDEPENDENCE BETWEEN THE CLASSICAL AND THE FREE ONE [J].
Benaych-Georges, Florent ;
Levy, Thierry .
ANNALS OF PROBABILITY, 2011, 39 (03) :904-938
[7]  
Brenner J.L., 1951, Pacific Journal of Mathematics, V1, P329
[8]   STATISTICAL ENSEMBLES OF COMPLEX QUATERNION AND REAL MATRICES [J].
GINIBRE, J .
JOURNAL OF MATHEMATICAL PHYSICS, 1965, 6 (03) :440-&
[9]   On fluctuations of eigenvalues of random hermitian matrices [J].
Johansson, K .
DUKE MATHEMATICAL JOURNAL, 1998, 91 (01) :151-204
[10]  
Mehta M L., 2004, RANDOM MATRICES