Coleman integration using the Tannakian formalism

被引:37
作者
Besser, A [1 ]
机构
[1] Ben Gurion Univ Negev, Dept Math, IL-84105 Beer Sheva, Israel
关键词
D O I
10.1007/s002080100263
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We use a new idea to construct a theory of iterated Coleman functions on overconvergent spaces with good reduction in any dimension. A Coleman function in this theory consists of a unipotent differential equation, a functional on the underlying bundle and a solution to the equation on a residue class. The new idea is to use the theory of Tannakian categories and the action of Frobenius to analytically continue solutions of the differential equation to all residue classes.
引用
收藏
页码:19 / 48
页数:30
相关论文
共 17 条
[11]   F-isocristaux unipotents [J].
Chiarellotto, B ;
Le Stum, B .
COMPOSITIO MATHEMATICA, 1999, 116 (01) :81-110
[12]   P-ADIC REGULATORS ON CURVES AND SPECIAL VALUES OF P-ADIC L-FUNCTIONS [J].
COLEMAN, R ;
DESHALIT, E .
INVENTIONES MATHEMATICAE, 1988, 93 (02) :239-266
[13]   TORSION POINTS ON CURVES AND P-ADIC ABELIAN-INTEGRALS [J].
COLEMAN, RF .
ANNALS OF MATHEMATICS, 1985, 121 (01) :111-168
[14]   DILOGARITHMS, REGULATORS AND P-ADIC L-FUNCTIONS [J].
COLEMAN, RF .
INVENTIONES MATHEMATICAE, 1982, 69 (02) :171-208
[15]  
COLMEZ P, 1998, ASTERISQUE
[16]  
Deligne P., 1982, Lecture Notes in Mathematics, V900, P101
[17]  
Zarhin Y.G., 1996, J MATH SCI, V81, P2744, DOI DOI 10.1007/BF02362339