Coleman integration using the Tannakian formalism

被引:37
作者
Besser, A [1 ]
机构
[1] Ben Gurion Univ Negev, Dept Math, IL-84105 Beer Sheva, Israel
关键词
D O I
10.1007/s002080100263
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We use a new idea to construct a theory of iterated Coleman functions on overconvergent spaces with good reduction in any dimension. A Coleman function in this theory consists of a unipotent differential equation, a functional on the underlying bundle and a solution to the equation on a residue class. The new idea is to use the theory of Tannakian categories and the action of Frobenius to analytically continue solutions of the differential equation to all residue classes.
引用
收藏
页码:19 / 48
页数:30
相关论文
共 17 条
[1]  
Berthelot P, 1997, INVENT MATH, V128, P329, DOI 10.1007/s002220050143
[2]  
BERTHELOT P, 1996, 9603 U RENN
[3]   A generalization of Coleman's p-adic integration theory [J].
Besser, A .
INVENTIONES MATHEMATICAE, 2000, 142 (02) :397-434
[4]   Syntomic regulators and p-adic integration I:: Rigid syntomic regulators [J].
Besser, A .
ISRAEL JOURNAL OF MATHEMATICS, 2000, 120 (2) :291-334
[5]   Syntomic regulators and p-adic integration II:: K2 of curves [J].
Besser, A .
ISRAEL JOURNAL OF MATHEMATICS, 2000, 120 (2) :335-359
[6]  
BESSER A, 2001, UNPUB P ADIC ARAKELO
[7]  
BESSER A, 2001, UNPUB SYNTOMIC REGUL
[8]  
Bosch S., 1984, Non-Archimedean analysis
[9]   Weights in rigid cohomology - Applications to unipotent F-isocrystals [J].
Chiarellotto, B .
ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 1998, 31 (05) :683-715
[10]  
Chiarellotto B, 1999, MANUSCRIPTA MATH, V100, P455, DOI 10.1007/s002290050212