Irreducibility of polynomials and arithmetic progressions with equal products of terms

被引:28
作者
Beukers, F [1 ]
Shorey, TN [1 ]
Tijdeman, R [1 ]
机构
[1] Univ Utrecht, Inst Math, NL-3508 TA Utrecht, Netherlands
来源
NUMBER THEORY IN PROGRESS, VOLS 1 AND 2: VOL 1: DIOPHANTINE PROBLEMS AND POLYNOMIALS; VOL 2: ELEMENTARY AND ANALYTIC NUMBER THEORY; | 1999年
关键词
D O I
10.1515/9783110285581.11
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In some fundamental papers Davenport, Lewis and Schinzel [DLS], Schinzel [Sch1, Sch3] and Fried [Fr1, Fr2, Fr3] have shown how irreducibility criteria for polynomials f(X) - g(Y) in combination with results of Runge or Siegel can be used to prove the finiteness of the solutions of the corresponding diophantine equation f(x) = g(y) in integers a, y. In the present paper we are particularly interested in the case f(X) = X(X + d(1)) ... (X + (m - 1)d(1)), g(Y) = Y(Y + d(2)) ... (Y + (n - 1)d(2)), i.e. the diophantine equation x(x + d(1)) ... (x + (m - 1)d(1)) = y(y + d(2)) ... (y + (n - 1)d(2)). (0.1) We first give some history on this equation and indicate how results for this equation can be derived from general irreducibility theory in the literature. Then we give direct proofs of the results using only basic facts on algebraic curves. 1991 Mathematics Subject Classification: 11D57.
引用
收藏
页码:11 / 26
页数:16
相关论文
共 35 条
[1]  
[Anonymous], 1978, Principles of algebraic geometry
[2]   DIOPHANTINE EQUATION U(U+1)(U+2)(U+3)=V(V+1)(V+2) [J].
BOYD, DW ;
KISILEVS.HH .
PACIFIC JOURNAL OF MATHEMATICS, 1972, 40 (01) :23-&
[3]  
BRINDZA B, IRREDUCIBILITY SOME
[4]  
Cassels J. W. S., 1970, Proceedings of the Fifteenth Scandinavian Congress (Oslo, 1968), V118, P1
[5]  
Choudhry A, 1997, ACTA ARITH, V82, P95
[6]   EQUATIONS OF FORM F(X)=G(Y) [J].
DAVENPORT, H ;
SCHINZEL, A ;
LEWIS, DJ .
QUARTERLY JOURNAL OF MATHEMATICS, 1961, 12 (48) :304-&
[7]  
EHRENFEUCHT A, 1958, PRACE MAT, V2, P167
[8]  
ERDOS P, 1976, C NUMERANTIUM, V16, P25
[9]   THEORIES OF FINITENESS FOR ABELIAN-VARIETIES OVER NUMBER-FIELDS [J].
FALTINGS, G .
INVENTIONES MATHEMATICAE, 1983, 73 (03) :349-366
[10]   IRREDUCIBILITY RESULTS FOR SEPARATED VARIABLES EQUATIONS [J].
FRIED, M .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1987, 48 (1-2) :9-22